Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3

Not Accessible

Your library or personal account may give you access

Abstract

Quasi-phase-matched (QPM) UV second-harmonic generation (SHG) in a periodically poled MgO:LiNbO3 waveguide is presented. A ridge-type waveguide with high nonlinearity and strong resistance to photorefractive damage was achieved by use of an ultraprecision machining technique. By use of this waveguide in 1.4µm periodically poled MgO:LiNbO3, a first-order QPM SHG device for 340-nm UV radiation was demonstrated. In a single-pass configuration, continuous-wave 22.4-mW UV light was generated for a fundamental power of 81 mW, corresponding to a normalized conversion efficiency of 340%/W.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto
Opt. Lett. 28(11) 935-937 (2003)

31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode

Tomoya Sugita, Kiminori Mizuuchi, Yasuo Kitaoka, and Kazuhisa Yamamoto
Opt. Lett. 24(22) 1590-1592 (1999)

Intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser with bulk periodically poled MgO–LiNbO3

Akinori Harada, Yasukazu Nihei, Yoji Okazaki, and Hiroaki Hyuga
Opt. Lett. 22(11) 805-807 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.