Abstract

We study threshold features of a Brillouin-shifted Stokes comb generated in a distributed fiber Raman amplifier. When the input power of Brillouin pump is linearly increased in high Raman gain, the first Stokes wave grows exponentially at much lower threshold power and then experiences an appreciable power decrease in the vicinity of the Brillouin comb’s threshold. This power reduction of the first Brillouin Stokes, which we did not see mentioned in previous reports, was caused by a power transfer to higher-order lines and initiated Brillouin comb generation. Moreover, the effects of Raman pump power and pumping direction on the threshold of a Brillouin comb are investigated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
    [CrossRef]
  2. D. A. Fishman J. A. Nagel, and J. Lightwave Technol. 11, 1721 (1993).
    [CrossRef]
  3. D. Cotter, J. Opt. Commun. 4, 10 (1983).
    [CrossRef]
  4. T. H. Russell and W. B. Roh, J. Opt. Soc. Am. B 19, 2341 (2002).
    [CrossRef]
  5. K. Noguchi, J. Lightwave Technol. LT-2, 1 (1984).
    [CrossRef]
  6. A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
    [CrossRef]
  7. T. Okuno and M. Nishimura, Electron. Lett. 38, 14 (2002).
    [CrossRef]
  8. M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
    [CrossRef]
  9. M. F. Ferreira, J. Lightwave Technol. 13, 1692 (1995).
    [CrossRef]
  10. K. D. Park, B. K. Min, P. H. Kim, N. Park, J. H. Lee, and J. S. Chang, Opt. Lett. 27, 155 (2002).
    [CrossRef]

2002 (5)

1995 (1)

M. F. Ferreira, J. Lightwave Technol. 13, 1692 (1995).
[CrossRef]

1993 (1)

D. A. Fishman J. A. Nagel, and J. Lightwave Technol. 11, 1721 (1993).
[CrossRef]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[CrossRef]

1984 (1)

K. Noguchi, J. Lightwave Technol. LT-2, 1 (1984).
[CrossRef]

1983 (1)

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[CrossRef]

Chang, J. S.

Cotter, D.

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

Evans, A. F.

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

Ferreira, M. F.

M. F. Ferreira, J. Lightwave Technol. 13, 1692 (1995).
[CrossRef]

Fishman, D. A.

D. A. Fishman J. A. Nagel, and J. Lightwave Technol. 11, 1721 (1993).
[CrossRef]

Kim, P. H.

Kobyakov, A.

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

Lee, J. H.

Mehendale, M.

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

Min, B. K.

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[CrossRef]

Nagel, J. A.

D. A. Fishman J. A. Nagel, and J. Lightwave Technol. 11, 1721 (1993).
[CrossRef]

Nishimura, M.

T. Okuno and M. Nishimura, Electron. Lett. 38, 14 (2002).
[CrossRef]

Noguchi, K.

K. Noguchi, J. Lightwave Technol. LT-2, 1 (1984).
[CrossRef]

Okuno, T.

T. Okuno and M. Nishimura, Electron. Lett. 38, 14 (2002).
[CrossRef]

Park, K. D.

Park, N.

Roh, W. B.

Russell, T. H.

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[CrossRef]

Tsuda, S.

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

Vasilyev, M.

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

Electron. Lett. (2)

T. Okuno and M. Nishimura, Electron. Lett. 38, 14 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, and A. F. Evans, Electron. Lett. 38, 268 (2002).
[CrossRef]

J. Lightwave Technol. (5)

M. F. Ferreira, J. Lightwave Technol. 13, 1692 (1995).
[CrossRef]

K. Noguchi, J. Lightwave Technol. LT-2, 1 (1984).
[CrossRef]

Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[CrossRef]

D. A. Fishman J. A. Nagel, and J. Lightwave Technol. 11, 1721 (1993).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, J. Lightwave Technol. 20, 1635 (2002).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

SBS in distributed Raman gain. Open circles, first Brillouin Stokes; open triangles, transmitted BP; filled circles, Brillouin Stokes without Raman gain; filled triangles, transmitted BP without Raman gain.

Fig. 3
Fig. 3

(a) Brillouin Stokes comb generated in the backward direction: input BP wavelength, 1520 nm; input BP power, 0.6 mW; Raman pump power, 450 mW; resolution bandwidth, 0.01 nm. (b) Enlarged view of the Brillouin Stokes comb (resolution bandwidth, 0.01 nm).

Fig. 4
Fig. 4

(a) Effects of the forward Raman pump on the first Brillouin Stokes. (b) Effects of the backward Raman pump on the first Brillouin Stokes.

Fig. 5
Fig. 5

Brillouin comb threshold as a function of Raman pump power.

Metrics