Abstract

We describe a technique that uses Doppler optical coherence tomography to estimate accurately the scattering fluid-flow velocity without a priori knowledge of the Doppler angle. Our technique is based on the combined use of the Doppler shift on the interference signal and the Doppler spectrum broadening caused by the particles moving across the probe beam. It is shown that the estimated values of the Doppler angle and average fluid velocity from the experiments agree well with the preset values.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995).
    [CrossRef] [PubMed]
  2. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439 (1997).
    [CrossRef]
  4. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
    [CrossRef]
  5. D. P. Dave and T. E. Milner, Opt. Lett. 25, 1523 (2000).
    [CrossRef]
  6. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 409 (2002).
    [CrossRef]
  7. Y. Imai and K. Tanaka, J. Opt. Soc. Am. A 16, 2007 (1999).
    [CrossRef]
  8. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  9. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, J. Opt. Soc. Am. B 18, 948 (2001).
    [CrossRef]
  10. M. D. Kulkarni, T. G. van Leeuween, S. Yazdanfar, and J. A. Izatt, Opt. Lett. 23, 1057 (1998).
    [CrossRef]
  11. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]

2002 (1)

2001 (1)

2000 (3)

1999 (2)

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Y. Imai and K. Tanaka, J. Opt. Soc. Am. A 16, 2007 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (1)

Barton, J. K.

Brecke, K. M.

Chen, Z.

Dave, D.

Dave, D. P.

de Boer, J. F.

Ding, Z.

Elder, J. B.

Frostig, R. D.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Imai, Y.

Izatt, J. A.

Kulkarni, M. D.

Milner, T. E.

Nelson, J. S.

Prakash, N.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Ren, H.

Saxer, C.

Shen, Q.

Srinivas, S. M.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).
[CrossRef]

Tanaka, K.

Tuchin, V. V.

van Leeuween, T. G.

Wang, R. K.

Wang, X. J.

Welch, A. J.

Xiang, S.

Xu, X.

Yazdanfar, S.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Probe beam geometry in the sample arm of the interferometer. α, the Doppler angle; ω0, the waist diameter of the focusing beam; V, the flow velocity vector, where Vl and Vt are the longitudinal and transverse velocities, respectively, relative to the probe beam direction.

Fig. 2
Fig. 2

Experimental results for the Doppler angle and volume flow rate set to 84° and 1.8 ml/min, respectively. (a) Spectrogram image showing the spectral frequency against the depth. (b) Transverse (top) and longitudinal (bottom) velocities across the capillary. (c) Transverse versus longitudinal velocities. (d) Final total velocity against depth.

Fig. 3
Fig. 3

Same as in Fig. 2 except with the Doppler angle set to 90°.

Tables (1)

Tables Icon

Table 1 Estimated Doppler Angles and Average Flow Velocities (VAve)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pf=Arσexp-f-f0σ2nAn exp-i2πftn,
σ=Vt2πω0+f0Δλλ0+σ0,
Vl=f0λ02,    Vt=2πω0σ-f0Δλλ0-σ0.

Metrics