Abstract

Mutual injection locking of a fiber-pigtailed Fabry–Perot laser diode (FPLD) and a closed-loop erbium-doped fiber-amplifier-based laser (EDFL) system are studied. A single FPLD longitudinal mode can be lasing in the EDFL–FPLD link, with a reduced linewidth of <0.017 nm and an improved sidemode-suppressing ratio of 50 dB. The FPLD’s optimized current range is below threshold within 10%, and its required feedback-injecting power is 12.4 µW (corresponding to 0.03% of the EDFL output power). The maximum detuning ranges of the current and temperature of the FPLD that preserve the narrow linewidth and the highest sidemode-suppressing ratio of the EDFL–FPLD link are 2.4 mA and 2.2 °C, respectively. The power dissipated by the EDFL–FPLD link is 20% more than that of the free-running EDFL.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
    [CrossRef]
  2. R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
    [CrossRef]
  3. H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
    [CrossRef]
  4. L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
    [CrossRef]
  5. D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
    [CrossRef]

1999

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

1998

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

1995

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

1990

S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
[CrossRef]

Agrawal, G. P.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

Goto, R.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

Goto, T.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

Kasuya, H.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

Kim, D. Y.

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

Kojima, K.

S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
[CrossRef]

Kyuma, K.

S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
[CrossRef]

Liou, L. W.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

Liu, H.-F.

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

Mori, M.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

Noda, S.

S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
[CrossRef]

Sampson, D. D.

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

Seo, D.-S.

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

Yamane, K.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

Yoshino, T.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

Yu, M.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

Appl. Phys. Lett.

H. Kasuya, M. Mori, R. Goto, T. Goto, and K. Yamane, Appl. Phys. Lett. 75, 13 (1999).
[CrossRef]

D.-S. Seo, H.-F. Liu, D. Y. Kim, and D. D. Sampson, Appl. Phys. Lett. 67, 1503 (1995).
[CrossRef]

Electron. Lett.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, Electron. Lett. 31, 41 (1995).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, Electron. Lett. 34, 1669 (1998).
[CrossRef]

IEEE J. Quantum Electron.

S. Noda, K. Kojima, and K. Kyuma, IEEE J. Quantum Electron. 26, 1883 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Original and (b) simplified designs of the mutually injection-locked EDFL–FPLD link. OC, optical circulator; PD, photodetector; TEC, thermo-electric controller; PID, proportional integrator and differentiator.

Fig. 2
Fig. 2

Lasing spectra of the EDFL–FPLD link at different currents of the FPLD.

Fig. 3
Fig. 3

Measured spectra of an open-loop EDFA (dotted curve), a free-running EDFL (dashed curve), and a mutually injection-locked EDFL–FPLD link (solid curve).

Fig. 4
Fig. 4

Comparison of spectral linewidths of an EDFL with an OBPF (dotted curve), a free-running FPLD (dashed curve), and a mutually injection-locked EDFL–FPLD link (solid curve in upper and lower figures).

Fig. 5
Fig. 5

Linewidth (open circles fitted by a dashed curve) and SMSR (filled squares fitted by a dotted curve) of the mutually injection-locked EDFL–FPLD link at different currents of the FPLD.

Fig. 6
Fig. 6

Current (top) and temperature (bottom) detuning ranges of the FPLD in the mutually injection-locked EDFL–FPLD link.

Metrics