Abstract

Rib microwaveguides are demonstrated on silicon-on-insulator substrates with Si film thickness of either 380 or 200 nm and a width of 1 µm. Corner mirrors that allow compact 90° turns between two perpendicular waveguides are characterized. Measured propagation losses are 0.4 dB/cm and 0.5 dB/cm for 380-nm and 200-nm Si film, respectively, and mirror losses are 1 dB. This allows the development of applications such as optical interconnects in integrated circuits over propagation distances larger than several centimeters.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, Opt. Commun. 146, 31 (1997).
    [CrossRef]
  2. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  3. K. K. Lee, D. R. Lim, and L. C. Kimerling, Opt. Lett. 26, 1888 (2001).
    [CrossRef]
  4. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 210, 43 (2002).
    [CrossRef]
  5. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Jr., Opt. Express 8, 517 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  6. T. Doi, A. Iwata, and M. Hirose, IEICE Trans. Electron. E80-C, 625 (1997).
  7. R. U. Ahmad, F. Pizzuto, G. S. Camarada, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 14, 65 (2002).
    [CrossRef]
  8. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, IEEE Photon. Technol. Lett. 14, 68 (2002).
    [CrossRef]
  9. E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip interconnects with compact and low-loss distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. Special Issue on Optical Interconnections (to be published).
  10. These data are available at http://www.soitec.com.
  11. These data are available at http://www.ise/ch.
  12. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, Appl. Opt. 36, 2443 (1997).
    [CrossRef] [PubMed]
  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).
  14. D. Pascal, S. Lardenois, E. Cassan, A. Koster, S. Laval, M. Heitzmann, L. Mollard, B. Dal'Zoto, N. Bouzaida, and R. Orobtchouk, in Integrated Photonics Research, Postconference Digest, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper IThI7.
  15. A. Sakai, G. Hara, and T. Baba, Jpn. J. Appl. Phys. 40, 383 (2001).
    [CrossRef]
  16. These data are available at http://www.photond.com.
  17. These data are available at http://www.intec.rug.ac.be/picco.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).

Other (17)

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, and A. Koster, Opt. Commun. 146, 31 (1997).
[CrossRef]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

K. K. Lee, D. R. Lim, and L. C. Kimerling, Opt. Lett. 26, 1888 (2001).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 210, 43 (2002).
[CrossRef]

R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Jr., Opt. Express 8, 517 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

T. Doi, A. Iwata, and M. Hirose, IEICE Trans. Electron. E80-C, 625 (1997).

R. U. Ahmad, F. Pizzuto, G. S. Camarada, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, IEEE Photon. Technol. Lett. 14, 68 (2002).
[CrossRef]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip interconnects with compact and low-loss distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. Special Issue on Optical Interconnections (to be published).

These data are available at http://www.soitec.com.

These data are available at http://www.ise/ch.

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, Appl. Opt. 36, 2443 (1997).
[CrossRef] [PubMed]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).

D. Pascal, S. Lardenois, E. Cassan, A. Koster, S. Laval, M. Heitzmann, L. Mollard, B. Dal'Zoto, N. Bouzaida, and R. Orobtchouk, in Integrated Photonics Research, Postconference Digest, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper IThI7.

A. Sakai, G. Hara, and T. Baba, Jpn. J. Appl. Phys. 40, 383 (2001).
[CrossRef]

These data are available at http://www.photond.com.

These data are available at http://www.intec.rug.ac.be/picco.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Device for waveguide characterization. The waveguide is inserted between two grating couplers with linear transitions.

Fig. 2
Fig. 2

Decoupled intensity normalized to the injected intensity for (a) 380-nm and (b) 200-nm rib waveguides as a function of the waveguide length.

Fig. 3
Fig. 3

Calculated mode profile16 for a slightly etched rib waveguide. Refractive indices are 3.505 for silicon and 1.447 for the buried oxide at λ=1.31 µm.

Fig. 4
Fig. 4

(a) Scanning electron microscopy view under oblique incidence of a corner mirror and (b) field intensity distribution calculated by 2D FDTD.

Metrics