Abstract

Anisotropic phase separation has been used to fabricate an electrically switchable microlens array from nematic liquid crystals. Nematic liquid-crystal-based microlens arrays have been built with diameters of 400 µm and natural focal lengths as small as 1.6 mm. The focal length of each microlens in the array can be changed in milliseconds by an applied electric field. These devices, which have no internal substructures to scatter light, offer higher efficiency and greater light throughput than polymer dispersed devices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose and S. Sato, Liq. Cryst. 5, 1425, 1989
    [CrossRef]
  2. T. Nose, S. Masuda, S. Sato, J. Li, L. Chien, and P. Bos, Opt. Lett. 22, 351, (1997)
    [CrossRef] [PubMed]
  3. M. N. F. Borrelli and O. L. Morse, Appl. Opt., 27, 476, (1988)
    [CrossRef] [PubMed]
  4. M. Wang and H. Su, Opt. Lett., 23, 876, 1998
    [CrossRef]
  5. M. Fritze, M. Stern, and P. Wyatt, Opt. Lett. 23, 141, (1998)
    [CrossRef]
  6. K. Rastani, C. Lin, and J. S. Patel, Appl. Opt. 31, 3046, (1992).
    [CrossRef] [PubMed]
  7. V. Vorflusev and S. Kumar, Science 283, 1903 (1999).2000).
    [CrossRef] [PubMed]
  8. V. Krongauz, E. Schmelzer, and R. Yohannan, Polymer, 32, 1654, (1991).
    [CrossRef]
  9. X. Wang, Y. Yu, and P. L. Taylor, J. Appl. Phys. 80, 3285 (1996).
    [CrossRef]

1999

V. Vorflusev and S. Kumar, Science 283, 1903 (1999).2000).
[CrossRef] [PubMed]

1998

1997

1996

X. Wang, Y. Yu, and P. L. Taylor, J. Appl. Phys. 80, 3285 (1996).
[CrossRef]

1992

1991

V. Krongauz, E. Schmelzer, and R. Yohannan, Polymer, 32, 1654, (1991).
[CrossRef]

1989

T. Nose and S. Sato, Liq. Cryst. 5, 1425, 1989
[CrossRef]

1988

Borrelli, M. N. F.

Bos, P.

Chien, L.

Fritze, M.

Krongauz, V.

V. Krongauz, E. Schmelzer, and R. Yohannan, Polymer, 32, 1654, (1991).
[CrossRef]

Kumar, S.

V. Vorflusev and S. Kumar, Science 283, 1903 (1999).2000).
[CrossRef] [PubMed]

Li, J.

Lin, C.

Masuda, S.

Morse, O. L.

Nose, T.

Patel, J. S.

Rastani, K.

Sato, S.

Schmelzer, E.

V. Krongauz, E. Schmelzer, and R. Yohannan, Polymer, 32, 1654, (1991).
[CrossRef]

Stern, M.

Su, H.

Taylor, P. L.

X. Wang, Y. Yu, and P. L. Taylor, J. Appl. Phys. 80, 3285 (1996).
[CrossRef]

Vorflusev, V.

V. Vorflusev and S. Kumar, Science 283, 1903 (1999).2000).
[CrossRef] [PubMed]

Wang, M.

Wang, X.

X. Wang, Y. Yu, and P. L. Taylor, J. Appl. Phys. 80, 3285 (1996).
[CrossRef]

Wyatt, P.

Yohannan, R.

V. Krongauz, E. Schmelzer, and R. Yohannan, Polymer, 32, 1654, (1991).
[CrossRef]

Yu, Y.

X. Wang, Y. Yu, and P. L. Taylor, J. Appl. Phys. 80, 3285 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of (a) the fabrication setup and (b) the resultant structure for two operating states of a nematic LC microlens array. The hemispheric surface-relief array was from UV-curable polymer. ITO, indium tin oxide.

Fig. 2
Fig. 2

Microscopic textures of a microlens array under a polarizing microscope with no voltage applied. The rubbing direction is rotated (a) 45° and (b) 0° with respect to one of the crossed polarizers. Concentric rings of different colors signify changing optical thicknesses, and areas of uniform shading outside the lenses indicate cell uniformity.

Fig. 3
Fig. 3

Focusing properties of the laser beam through the lens: (a) focused beam image at 1.7 mm with no voltage applied, (b) light-intensity profile at the focal point, (c) defocused beam image with 3 V at 1.7 mm, (d) refocused beam image with 3 V at 3.7 mm.

Fig. 4
Fig. 4

Dependence of the microlen’s focal length on voltage. The focal length increases quadratically for fields higher than the threshold value of 1.5 V.

Fig. 5
Fig. 5

(a) Microscopic structure and (b) depth profile of one of the microlenses. The curve in (b) is a fit to determine the radius of curvature, R=381±20 µm, and the diameter, 150 µm.

Metrics