Abstract

We present a phase-imaging method with an axial range that can in principle be arbitrarily large compared to the wavelength and does not involve the usual phase unwrapping by detection of phase discontinuity. The method consists of the generation and combination of two phase maps in a digital holography system by use of two separate wavelengths. For example, we reconstructed the surface of a spherical mirror with 10nm axial resolution and an axial range of 3 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jueptner, Measurement Sci. Technol. 13, R85 (2002).
    [CrossRef]
  2. M. K. Kim, Opt. Express 7, 305 (2000), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  3. S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
    [CrossRef]
  4. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, Appl. Opt. 31, 4973 (1992).
    [CrossRef] [PubMed]
  5. T. Zhang and I. Yamaguchi, Proc. SPIE 3479, 152 (1998).
    [CrossRef]
  6. T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  8. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, Appl. Opt. 37, 1917 (1998).
    [CrossRef]
  9. A. Dakoff, J. Gass, and M. K. Kim, “Microscopic three-dimensional imaging by digital interference holography,” J. Electron. Imag. (to be published).

1998 (2)

S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
[CrossRef]

T. Zhang and I. Yamaguchi, Proc. SPIE 3479, 152 (1998).
[CrossRef]

Jueptner, W.

S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
[CrossRef]

Osten, W.

S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
[CrossRef]

Seebacher, S.

S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
[CrossRef]

Yamaguchi, I.

T. Zhang and I. Yamaguchi, Proc. SPIE 3479, 152 (1998).
[CrossRef]

Zhang, T.

T. Zhang and I. Yamaguchi, Proc. SPIE 3479, 152 (1998).
[CrossRef]

Proc. SPIE (1)

T. Zhang and I. Yamaguchi, Proc. SPIE 3479, 152 (1998).
[CrossRef]

Proc. SPIE (1)

S. Seebacher, W. Osten, and W. Jueptner, Proc. SPIE 3479, 104 (1998).
[CrossRef]

Other (7)

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, Appl. Opt. 31, 4973 (1992).
[CrossRef] [PubMed]

U. Schnars and W. Jueptner, Measurement Sci. Technol. 13, R85 (2002).
[CrossRef]

M. K. Kim, Opt. Express 7, 305 (2000), http://www.opticsexpress.org.
[CrossRef] [PubMed]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

E. Cuche, F. Bevilacqua, C. Depeursinge, Opt. Lett. 24, 291 (1999).
[CrossRef]

M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, Appl. Opt. 37, 1917 (1998).
[CrossRef]

A. Dakoff, J. Gass, and M. K. Kim, “Microscopic three-dimensional imaging by digital interference holography,” J. Electron. Imag. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of two-wavelength phase imaging. See text for details.

Fig. 2
Fig. 2

Apparatus for off-axis digital holographic microscopy experiments. See text for details.

Fig. 3
Fig. 3

Digital holography intensity and phase images: (a) object, (b) interference of reference and object waves, (c) intensity image of digital holographic reconstruction, (d) phase image.

Fig. 4
Fig. 4

Experiment of two-wavelength phase imaging: (a) single-wavelength phase profile, (b) coarse-map phase profile of the beat wavelength, (c) fine-map phase profile after the noise-reduction procedure has been applied.

Fig. 5
Fig. 5

Reconstructed three-dimensional phase images: (a) single-wavelength and (b) two-wavelength phase images of a reflective resolution target; (c), (d) images of a spherical mirror.

Fig. 6
Fig. 6

Noise level in the reconstructed image of a spherical mirror: (a) two-wavelength phase image of a spherical mirror; (b) cross-sectional profile of (a); (c) difference between (b) and a perfect sphere, showing a noise level of the order of 10 nm.

Metrics