Abstract

What is to our knowledge the first instrument for time-resolved optical mammography operating at wavelengths longer than 900 nm has been developed. It is a scanning system that relies on the acquisition of time-resolved transmittance curves at 683, 785, 912, and 975 nm, with a total measurement time of 5 min for an entire image. Breast structures and lesions can be discriminated based on the different absorption and scattering properties at the four wavelengths, which reflect different contributions of oxyhemoglobin, deoxyhemoglobin, water, and lipids, as well as distinct structures. The system is currently used in a European clinical trial.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Chance, R. R. Alfano, B. J. Tromberg, and E. M. Sevick-Muraca, eds., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE 4250, (2001).
  2. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, and M. Kashke, Med. Phys. 23, 149 (1996).
    [CrossRef] [PubMed]
  3. L. Götz, S. J. Heywang-Köbrunner, O. Schütz, and H. Siebold, Aktuelle Radiol. 8, 31 (1998).
  4. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
    [CrossRef]
  5. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
    [CrossRef] [PubMed]
  6. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, Appl. Opt. 32, 504 (1993).
    [CrossRef] [PubMed]
  7. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 262 (2001).
    [CrossRef]

2001 (1)

B. Chance, R. R. Alfano, B. J. Tromberg, and E. M. Sevick-Muraca, eds., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE 4250, (2001).

Proc. SPIE (1)

B. Chance, R. R. Alfano, B. J. Tromberg, and E. M. Sevick-Muraca, eds., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE 4250, (2001).

Other (6)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, and M. Kashke, Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

L. Götz, S. J. Heywang-Köbrunner, O. Schütz, and H. Siebold, Aktuelle Radiol. 8, 31 (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, Neoplasia 2, 26 (2000).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, Appl. Opt. 32, 504 (1993).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 262 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cranio-caudal view of the right breast of patient 42 (healthy). From left to right: x-ray mammogram, (top) late-gated (2.8–3.6 ns at 683 and 785 nm, 2.0–2.8 ns at 912 and 975 nm) intensity images, and (bottom) reduced scattering maps scale 514 cm-1) at 683, 785, 912, and 975 nm.

Fig. 2
Fig. 2

Cranio-caudal view of the left breast of patient 60 (cyst). From left to right: same as in Fig. 1 (except for scale of scattering maps, 315 cm-1).

Fig. 3
Fig. 3

Cranio-caudal view of the right breast of patient 30 (malignant tumor). From left to right: same as in Fig. 1 (except for scale of scattering maps, 411 cm-1).

Metrics