Abstract

A detailed theoretical and experimental study of the depth dependence of buried ion-exchanged waveguides on waveguide width is reported. Modeling, which includes the effect of nonhomogeneous time-dependent electric field distribution, agrees well with our experiments showing that burial depth increases linearly with waveguide width. These results may be used in the proper design of integrated optical circuits that need waveguides of different widths at different sections, such as arrayed waveguide gratings.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Honkanen, Proc. SPIE 53, 159 (1994).
  2. Y. Jaouen, L. du-Mouza, D. Barbier, J. M. Delavaux, and P. Bruno, IEEE Photon. Technol. Lett. 11, 1105 (1999).
    [CrossRef]
  3. D. F. Geraghty, D. Provenzano, M. M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian, Electron. Lett. 37, 829 (2001).
    [CrossRef]
  4. K. Okamoto, M. Moriwaki, and S. Suzuki, Electron. Lett. 31, 184 (1995).
    [CrossRef]
  5. L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit, IEEE Photon. Technol. Lett. 6, 1008 (1994).
    [CrossRef]
  6. B. Buchold and E. Voges, Electron. Lett. 32, 2249 (1996).
    [CrossRef]
  7. J. Albert and J. W. Y. Lit, Appl. Opt. 29, 2798 (1990).
    [CrossRef] [PubMed]
  8. D. Cheng, J. Saarinen, H. Saarikoski, and A. Tervonen, Opt. Commun. 137, 233 (1997).
    [CrossRef]
  9. Jerome Hazart and V. Minier, IEEE J. Quantum Electron. 37, 606 (2001).
    [CrossRef]
  10. R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, Appl. Opt. 22, 1923 (1983).
    [CrossRef]
  11. R. V. Ramaswamy and R. Srivastava, J. Lightwave Technol. 6, 984 (1988).
    [CrossRef]
  12. M. N. Weiss and R. Srivastava, Appl. Opt. 34, 455 (1995).
    [CrossRef] [PubMed]
  13. L. Palchetti, E. Giorgetti, D. Grando, and S. Sottini, IEEE J. Quantum Electron. 34, 179 (1998).
    [CrossRef]
  14. P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

1994 (1)

S. Honkanen, Proc. SPIE 53, 159 (1994).

Geraghty, D. F.

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Honkanen, S.

S. Honkanen, Proc. SPIE 53, 159 (1994).

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Madasamy, P.

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Morrell, M. M.

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Peyghambarian, N.

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Proc. SPIE (1)

S. Honkanen, Proc. SPIE 53, 159 (1994).

Other (13)

Y. Jaouen, L. du-Mouza, D. Barbier, J. M. Delavaux, and P. Bruno, IEEE Photon. Technol. Lett. 11, 1105 (1999).
[CrossRef]

D. F. Geraghty, D. Provenzano, M. M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian, Electron. Lett. 37, 829 (2001).
[CrossRef]

K. Okamoto, M. Moriwaki, and S. Suzuki, Electron. Lett. 31, 184 (1995).
[CrossRef]

L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit, IEEE Photon. Technol. Lett. 6, 1008 (1994).
[CrossRef]

B. Buchold and E. Voges, Electron. Lett. 32, 2249 (1996).
[CrossRef]

J. Albert and J. W. Y. Lit, Appl. Opt. 29, 2798 (1990).
[CrossRef] [PubMed]

D. Cheng, J. Saarinen, H. Saarikoski, and A. Tervonen, Opt. Commun. 137, 233 (1997).
[CrossRef]

Jerome Hazart and V. Minier, IEEE J. Quantum Electron. 37, 606 (2001).
[CrossRef]

R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, Appl. Opt. 22, 1923 (1983).
[CrossRef]

R. V. Ramaswamy and R. Srivastava, J. Lightwave Technol. 6, 984 (1988).
[CrossRef]

M. N. Weiss and R. Srivastava, Appl. Opt. 34, 455 (1995).
[CrossRef] [PubMed]

L. Palchetti, E. Giorgetti, D. Grando, and S. Sottini, IEEE J. Quantum Electron. 34, 179 (1998).
[CrossRef]

P. Madasamy, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, in Technical Digest: Symposium on Optical Fiber Measurements, 2002, P. A. Williams G. W. Day, eds. (National Institute for Standards and Technology, Boulder, Colo., 2002), pp. 25–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Concentration profile with the electric field lines at the end of the burial process for the 3- and 9µm waveguides are given in the top row with the 3µm waveguide on the left and the 9µm waveguide on the right. The contours for the concentration profile represent the relative silver-ion concentration and go as 0.1,0.2,,0.4 for the 3µm waveguide and 0.1,0.2,,0.5 for the 9µm waveguide. The corresponding intensity profiles solved by the finite-difference method are given below the concentration profiles. The contour lines for the intensity profile go as 0.1,0.3,,0.9 of the normalized intensity.

Fig. 2
Fig. 2

Burial-depth variation as a function of mask-opening width. The solid line corresponds to the linear fit for the experimental data, and the dashed lines correspond to the linear fit for the modeled data.

Fig. 3
Fig. 3

Experimental setup for measuring burial depth based on the Newport AutoAlign System.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CAt=DA1-αCA2CA+αCA21-αCA-eEextCAkT.

Metrics