Abstract

We present a new model for the two-photon photorefractive recording process. We solved the resulting set of nonlinear coupled partial differential equations of the model within a linear approximation of the steady state. We found very good agreement with experimental results.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1979).
  2. F. Chen, J. LaMacchia, and D. Fraser, Appl. Phys. Lett. 13, 223 (1968).
    [CrossRef]
  3. D. von der Linde, A. Glass, and K. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  4. H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
    [CrossRef]
  5. Y. S. Bai and R. Kochru, Phys. Rev. Lett. 78, 2944 (1997).
    [CrossRef]
  6. Y. S. Bai, R. Neurgaonkar, and R. Kochru, Opt. Lett. 22, 334 (1997).
    [CrossRef] [PubMed]
  7. K. Buse, L. Holtmann, and E. Krätzig, Opt. Commun. 85, 183 (1991).
    [CrossRef]
  8. S. Kostritskii, D. Maring, R. Tlavykaev, and R. Ramaswamy, Appl. Opt. 39, 4292 (2000).
    [CrossRef]
  9. L. Paraschis, M. Brashaw, A. Liu, and L. Hesselink, J. Opt. Soc. Am. B 14, 2670 (1997).
    [CrossRef]
  10. T. Nikolajsen, P. Johansen, B. Sturman, and E. Podivilov, J. Opt. Soc. Am. B 18, 485 (2001).
    [CrossRef]
  11. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  12. F. Chen, J. Appl. Phys. 40, 3389 (1969).
    [CrossRef]
  13. H. Guenther, G. Wittmann, R. Macfarlane, and R. Neurgaonkar, Opt. Lett. 22, 1305 (1997).
    [CrossRef]

Other (13)

E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1979).

F. Chen, J. LaMacchia, and D. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

D. von der Linde, A. Glass, and K. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Y. S. Bai and R. Kochru, Phys. Rev. Lett. 78, 2944 (1997).
[CrossRef]

Y. S. Bai, R. Neurgaonkar, and R. Kochru, Opt. Lett. 22, 334 (1997).
[CrossRef] [PubMed]

K. Buse, L. Holtmann, and E. Krätzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

S. Kostritskii, D. Maring, R. Tlavykaev, and R. Ramaswamy, Appl. Opt. 39, 4292 (2000).
[CrossRef]

L. Paraschis, M. Brashaw, A. Liu, and L. Hesselink, J. Opt. Soc. Am. B 14, 2670 (1997).
[CrossRef]

T. Nikolajsen, P. Johansen, B. Sturman, and E. Podivilov, J. Opt. Soc. Am. B 18, 485 (2001).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

F. Chen, J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

H. Guenther, G. Wittmann, R. Macfarlane, and R. Neurgaonkar, Opt. Lett. 22, 1305 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transition scheme corresponding to the two-photon photorefractive effect. We consider deep impurity levels and acceptor and donor states that are practically within the VB.

Fig. 2
Fig. 2

Density of free electrons n in the valence band as a function of the spatial coordinate y.

Fig. 3
Fig. 3

Density of electrons on the intermediate level n1 as a function of the spatial coordinate y.

Fig. 4
Fig. 4

Space-charge electric field Esc as a function of the spatial coordinate y.

Fig. 5
Fig. 5

Change of refractive index as a function of the light ω2 intensity.

Fig. 6
Fig. 6

Diffraction efficiency as a function of the light ω2 intensity for different modulations.

Tables (1)

Tables Icon

Table 1 Constants Used for Our Calculations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N+t=s1I1+β1N-N+-γ1n1N+-γnN+,
n1t=s1I1+β1N-N++γ2nn01-n1-γ1n1N+-s2I2+β2n1,
nt=s2I2+β2n1+1e·J-γnN+-γ2nn01-n1,
·ϵϵ0E=eN+-n-n1-NA,
J=eDn+eμnE+eˆcpN+-NI2,
n=s1I1s2I2N-NAγNAs2I2+γ1NA,
n1=s1I1N-NAs2I2+γ1NA,
yDny+μnE=0,
E=J0-Dnyμn.
Δnri=rN03Esc,
η=sin2πΔnriλ cos θBL,

Metrics