Abstract

An experimental system has been assembled to measure the absolute values of the Raman gain spectrum for millimeter-thick glass samples. Results are reported for two new oxide glasses with Raman gain coefficients as much as 30 times larger than that of fused silica and more than twice its spectral coverage.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki and Y. Emori, Opt. Photon. News 13(7), 52 (2002).
    [CrossRef]
  2. F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, and W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
    [CrossRef]
  3. N. Shibata, M. Horiguchi, and T. Edahiro, J. Non-Cryst. Solids 45, 115 (1981).
    [CrossRef]
  4. M. E. Lines, A. E. Miller, K. Nassau, and K. B. Lyons, J. Non-Cryst. Solids 89, 163 (1987).
    [CrossRef]
  5. A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, J. Non-Cryst. Solids 99, 289 (1988).
    [CrossRef]
  6. J. S. Kanger, T. W. Tukker, C. Otto, and J. Greve, Opt. Lett. 21, 671 (1996).
    [CrossRef] [PubMed]
  7. M. Katsuragawa K. Hakuta, Opt. Lett. 75, 177 (2000).
    [CrossRef]
  8. A. Berthereau, “Vitreous materials for nonlinear optics: study of tellurite glasses exhibiting high Kerr effect and second harmonic phenomenon in glasses,” Ph.D. dissertation (University of Bordeaux I, Bordeaux, France, 1995).
  9. R. H. Stolen, Technical Digest Symposium on Optical Fiber Measurements, NIST Spec. Publ. 953, 139 (2000).
  10. R. Hellwarth, J. Cherlow, and T.-T. Yang, Phys. Rev. B 11, 964 (1975).
    [CrossRef]
  11. R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
    [CrossRef]

2000 (1)

R. H. Stolen, Technical Digest Symposium on Optical Fiber Measurements, NIST Spec. Publ. 953, 139 (2000).

Stolen, R. H.

R. H. Stolen, Technical Digest Symposium on Optical Fiber Measurements, NIST Spec. Publ. 953, 139 (2000).

NIST Spec. Publ. (1)

R. H. Stolen, Technical Digest Symposium on Optical Fiber Measurements, NIST Spec. Publ. 953, 139 (2000).

Other (10)

R. Hellwarth, J. Cherlow, and T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

S. Namiki and Y. Emori, Opt. Photon. News 13(7), 52 (2002).
[CrossRef]

F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, and W. J. Mosby, Appl. Phys. Lett. 32, 34 (1978).
[CrossRef]

N. Shibata, M. Horiguchi, and T. Edahiro, J. Non-Cryst. Solids 45, 115 (1981).
[CrossRef]

M. E. Lines, A. E. Miller, K. Nassau, and K. B. Lyons, J. Non-Cryst. Solids 89, 163 (1987).
[CrossRef]

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, J. Non-Cryst. Solids 99, 289 (1988).
[CrossRef]

J. S. Kanger, T. W. Tukker, C. Otto, and J. Greve, Opt. Lett. 21, 671 (1996).
[CrossRef] [PubMed]

M. Katsuragawa K. Hakuta, Opt. Lett. 75, 177 (2000).
[CrossRef]

A. Berthereau, “Vitreous materials for nonlinear optics: study of tellurite glasses exhibiting high Kerr effect and second harmonic phenomenon in glasses,” Ph.D. dissertation (University of Bordeaux I, Bordeaux, France, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absolute Raman gain coefficients and the normalized spontaneous Raman spectrum for 85%TeO210%Nb2O55%MgO glass. The peak Raman gain value is 22±2×10-13 m/W at 1147 nm, which corresponds to a wave-number shift of 22 THz. OPG, optical parametric generator.

Fig. 2
Fig. 2

Absolute Raman gain coefficients and the normalized spontaneous Raman spectrum for 85%TeO215%WO3 glass. The peak Raman gain value is 30±2×10-13m/W at 1146 nm. Superimposed is the Raman gain spectrum of fused silica with its gain coefficient multiplied by a factor of 10.

Fig. 3
Fig. 3

Apparatus for measuring Raman gain coefficients. An explanation and detailed parameters are given in the text.

Metrics