Abstract

By use of a near-field scanning optical microscope (NSOM) in collection mode, the intensity distribution along a 2×2 multimode interference coupler was directly imaged as a function of wavelength. Although calculations can predict the general trend of wavelength dependence and the approximate positions of multiple images in the coupler, the accuracy is poor because of uncertainties in the waveguide width. We show that direct imaging using a NSOM bypasses calculational uncertainties and proves to be a powerful technique for studying these waveguide devices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  2. G. N. van den Hoven, A. Polman, G. van Dam, J. W. M. van Uffelen, and M. K. Smit, Opt. Lett. 21, 576 (1996).
    [CrossRef] [PubMed]
  3. D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
    [CrossRef]
  4. G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
    [CrossRef]
  5. A. G. Choo, H. E. Jackson, U. Thiel, G. N. D. Brabander, and J. T. Boyd, Appl. Phys. Lett. 65, 947 (1994).
    [CrossRef]
  6. G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
    [CrossRef]
  7. A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, J. Appl. Phys. 89, 2801 (2001).
    [CrossRef]
  8. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, Appl. Opt. 37, 7289 (1998).
    [CrossRef]
  9. R. Stockle, C. Fokas, V. Deckert, and R. Zenobi, Appl. Phys. Lett. 75, 160 (1999).
    [CrossRef]

1998 (1)

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Goldberg, B. B.

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Krauss, T. F.

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Pomeroy, J. M.

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Ünlü, M. S.

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Vander Rhodes, G. H.

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Proc. IEEE Optoelectron. (1)

G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, and T. F. Krauss, Proc. IEEE Optoelectron. (Special Issue on Photonic Crystals and Photonic Microstructures) 145, 379 (1998).
[CrossRef]

Other (8)

A. G. Choo, H. E. Jackson, U. Thiel, G. N. D. Brabander, and J. T. Boyd, Appl. Phys. Lett. 65, 947 (1994).
[CrossRef]

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, J. Appl. Phys. 89, 2801 (2001).
[CrossRef]

P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, Appl. Opt. 37, 7289 (1998).
[CrossRef]

R. Stockle, C. Fokas, V. Deckert, and R. Zenobi, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

G. N. van den Hoven, A. Polman, G. van Dam, J. W. M. van Uffelen, and M. K. Smit, Opt. Lett. 21, 576 (1996).
[CrossRef] [PubMed]

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup: a single-mode optical fiber pigtailed to one input waveguide couples light from an infrared laser into the MMI coupler. A small portion of the light is collected by the NSOM tip and detected by a photodiode. (b) Image of the coupler taken with an optical microscope. The coupler is 18±0.5 µm wide and 795±2.5 µm in length, from input to output.

Fig. 2
Fig. 2

(a) Complete map of the intensity distribution inside the coupler for TE-polarized light at λ=1600 nm. An outline of the coupler is overlaid on top of the image. The calculated position at which two and three images should be observed is indicated on the image. Linecuts of the intensity distribution shown in (a) were taken at the locations of (b) Lπ and (c) 3/2Lπ.

Fig. 3
Fig. 3

Intensity images of the output of the coupler taken at (a) λ=1500 nm and (b) λ=1600 nm. Linecuts, indicated by the white line in each image, are shown below the image to illustrate the appearance of a third central peak near the end of the coupler at 1600 nm.

Tables (1)

Tables Icon

Table 1 Calculated Locations of Multiple Image Formation in a MMI Coupler (W=18±0.5 µm, ne=1.48, and nc=1.458)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L=pN3Lπ,
Lπ=πβ0-β14neWe23λ0,
We=W+λ0πncne2σne2-nc2-1/2,

Metrics