Abstract

The intrinsic 244-nm photosensitivity of boron-codoped germanosilicate optical fibers is enhanced by 355-nm hypersensitization. Hypersensitization through standard polymer coating is also demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Canning, Opt. Fiber Technol. Mater. Devices Syst. 6, 275 (2000).
    [CrossRef]
  2. J. Canning, Mater. Forum 25, 101 (2001).
  3. J. Canning, in Proceedings of White Nights' Summer School on Photosensitivity in Optical Waveguides and Glasses, H. Limberger E. Dianov, eds. (Fiber Optics Research Center, Moscow, 2002).
  4. J. Canning, K. Sommer, and M. Englund, Meas. Sci. Technol. 12, 824 (2001).
    [CrossRef]
  5. K. P. Chen, Ph.D. dissertation “Gratings, photosensitivity, and poling in silica optical waveguides with 157-nm F2 laser irradiation,” (University of Toronto, Toronto, Canada, 2002).
  6. M. Lancry, P. Niay, S. Bailleux, M. Douy, C. Depecker, P. Courdier, and I. Raint, Appl. Opt. 41, 7197 (2002).
    [CrossRef] [PubMed]
  7. K. P. Chen, P. R. Herman, and R. Tam, IEEE Photon. Technol. Lett. 14, 170 (2002).
    [CrossRef]
  8. D. S. Starobudov, V. Grubsky, J. Feinberg, B. Kobrin, and S. Juma, Opt. Lett. 22, 1086 (1997).
    [CrossRef]
  9. J. Canning, A. Canagasabey, and N. Groothoff, Opt. Commun. 214, 141 (2002).
    [CrossRef]

Canning, J.

J. Canning, in Proceedings of White Nights' Summer School on Photosensitivity in Optical Waveguides and Glasses, H. Limberger E. Dianov, eds. (Fiber Optics Research Center, Moscow, 2002).

Other (9)

J. Canning, Opt. Fiber Technol. Mater. Devices Syst. 6, 275 (2000).
[CrossRef]

J. Canning, Mater. Forum 25, 101 (2001).

J. Canning, in Proceedings of White Nights' Summer School on Photosensitivity in Optical Waveguides and Glasses, H. Limberger E. Dianov, eds. (Fiber Optics Research Center, Moscow, 2002).

J. Canning, K. Sommer, and M. Englund, Meas. Sci. Technol. 12, 824 (2001).
[CrossRef]

K. P. Chen, Ph.D. dissertation “Gratings, photosensitivity, and poling in silica optical waveguides with 157-nm F2 laser irradiation,” (University of Toronto, Toronto, Canada, 2002).

M. Lancry, P. Niay, S. Bailleux, M. Douy, C. Depecker, P. Courdier, and I. Raint, Appl. Opt. 41, 7197 (2002).
[CrossRef] [PubMed]

K. P. Chen, P. R. Herman, and R. Tam, IEEE Photon. Technol. Lett. 14, 170 (2002).
[CrossRef]

D. S. Starobudov, V. Grubsky, J. Feinberg, B. Kobrin, and S. Juma, Opt. Lett. 22, 1086 (1997).
[CrossRef]

J. Canning, A. Canagasabey, and N. Groothoff, Opt. Commun. 214, 141 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy-level pathways for a germanium oxygen-deficient center (GODC) defect excited to the drawing-induced defect (DID) state with pulsed 240-nm light or cw 330-nm light.

Fig. 2
Fig. 2

(a) Natural-log plots of grating growth for standard GF1 fibers with hypersensitization fluences of 4, 8, 20, and 30 kJ/cm2 as well as a pristine GF1 fiber. The inset shows natural-log plots of grating growth for fluences of 4 and 8 kJ/cm2 with linear fit (shown separately for clarity). (b) Plot of index modulation versus fluence. (c) Fringe contrast plots for fluences of 4, 8, 20, and 30 kJ/cm2.

Fig. 3
Fig. 3

Comparison of grating strengths written with cw 244-nm light in a pristine fiber with those of germanosilicate fibers hypersensitized without a polymer coating and through the polymer coating with 8 kJ/cm2 of 355-nm light. The grating writing fluence at 244 nm is 18 kJ/cm2. The symbols represent experimental data, whereas the solid curves are fitted grating profiles calculated numerically by use of coupled-mode theory.

Metrics