Abstract

A theoretical analysis of an optical fiber photonic-bandgap-based refractometer is presented. The design is based on a quarter-wave reflector with one defect. By modifying both the real and the imaginary parts of the index of refraction of the defects we begin to change either the frequency or the amplitude of the localized optical mode. So we could fabricate a specific optical fiber refractometer by combining all the variables: index of refractive index of the defects and the rest of layers, thickness of the defect, number of layers, etc. to yield a large set of design possibilities, for example, detecting wider or thinner ranges of refractive indices, or controlling the detection accuracy. Some rules for the practical implementation of the refractometer are given.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  2. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
    [CrossRef] [PubMed]
  3. P. Tran, Opt. Lett. 21, 1138 (1996).
    [CrossRef] [PubMed]
  4. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
    [CrossRef]
  5. T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
    [CrossRef]
  6. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
    [CrossRef]
  7. F. J. Arregui, I. R. Matías, K. L. Cooper, R. O. Claus, Opt. Lett. 26, 131 (2001).
    [CrossRef]
  8. F. J. Arregui, I. R. Matías, Y. Liu, K. M. Lenahan, and R. O. Claus, Opt. Lett. 24, 596 (1999).
    [CrossRef]
  9. F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matías, and K. L. Cooper, IEEE Photon. Technol. Lett. 13, 1319 (2001).
    [CrossRef]
  10. S. A. Khodier, Opt. Laser Technol. 34, 125 (2002).
    [CrossRef]
  11. I. R. Matías, I. Del Villar, F. J. Arregui, and R. O. Claus, J. Opt. Soc. Am. A 20, 644 (2003).
    [CrossRef]

2000 (1)

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

George, T.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Greenwald, A. C.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

James, T. D.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Johnson, E. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Jones, E. W.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Stevenson, W. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Wollam, J. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Proc. SPIE (1)

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, Proc. SPIE 3937, 80 (2000).
[CrossRef]

Other (10)

E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
[CrossRef]

F. J. Arregui, I. R. Matías, K. L. Cooper, R. O. Claus, Opt. Lett. 26, 131 (2001).
[CrossRef]

F. J. Arregui, I. R. Matías, Y. Liu, K. M. Lenahan, and R. O. Claus, Opt. Lett. 24, 596 (1999).
[CrossRef]

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matías, and K. L. Cooper, IEEE Photon. Technol. Lett. 13, 1319 (2001).
[CrossRef]

S. A. Khodier, Opt. Laser Technol. 34, 125 (2002).
[CrossRef]

I. R. Matías, I. Del Villar, F. J. Arregui, and R. O. Claus, J. Opt. Soc. Am. A 20, 644 (2003).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
[CrossRef] [PubMed]

P. Tran, Opt. Lett. 21, 1138 (1996).
[CrossRef] [PubMed]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of the one-dimensional PBG refractometer consisting of two 30-layer Bragg mirrors and a cavity (defect).

Fig. 2
Fig. 2

One-dimensional 61-layer PBG structure with a defect.

Fig. 3
Fig. 3

Transmitted power of the quarter-wave reflector with a defect in the middle.

Fig. 4
Fig. 4

Transmitted power of a QWR for four refractive indices in the defect. There is no absorption. The thickness of the defect is 100 nm.

Fig. 5
Fig. 5

Transmitted power of a QWR for five refractive indices in the defect. There is no absorption. The thickness of the defect is 40 nm.

Fig. 6
Fig. 6

Transmitted power of a QWR with a defect layer with several imaginary parts in its refractive index. The thickness of the defect is 40 nm.

Fig. 7
Fig. 7

Transmitted power on a logarithmic scale for a defect with and without losses. The thickness of the defect is 40 nm, and there are 41 layers.

Metrics