Abstract

We report a type of high-speed microcell polarimeter that utilizes microelectrodes, liquid-crystal films, and ultrathin high-contrast polarizers, all integrated between the tips of two optical fibers. When combined with optimized nematic liquid-crystal materials, this compact (2.5 cm×0.5 cm×0.5 cm) device offers excellent optical properties and continuous, high-speed operation at >2 kHz with moderately low operating voltages. It requires no bulk optical elements, and it shows excellent performance when implemented for the measurement of degree of polarization in 10-Gbit/s test systems. Polarimeters based on this design have promising potential applications in polarization analysis for high-speed optical communication systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Collet, Opt. Commun. 52, 77 (1984).
    [CrossRef]
  2. R. M. A. Azzam, J. Opt. Soc. Am. A 17,2105 (2000).
    [CrossRef]
  3. P. Williams, Appl. Opt. 38,6508 (1999).
    [CrossRef]
  4. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, C. C. Huang, R. Pindak, and J. A. Rogers, Appl. Phys. Lett. 81,5243 (2002).
    [CrossRef]
  5. E. Collet, in Polarized Light: Fundamental and Applications (Marcel Dekker, New York, 1990), p. 103.
  6. P. Olivard, P. Y. Gerligand, B. Le Jeune, and J. Lotrian, J. Phys. D 32,1618 (1999).
    [CrossRef]
  7. R. M. A. Azzam, Opt. Lett. 12,558 (1987).
    [CrossRef] [PubMed]
  8. L. Dupont, J. L. de Bougrenet de la Tocnaye, M. L. Gall, and D. Penninckx, Opt. Commun. 176,113 (2000).
    [CrossRef]

Collet, E.

E. Collet, in Polarized Light: Fundamental and Applications (Marcel Dekker, New York, 1990), p. 103.

Other (8)

E. Collet, Opt. Commun. 52, 77 (1984).
[CrossRef]

R. M. A. Azzam, J. Opt. Soc. Am. A 17,2105 (2000).
[CrossRef]

P. Williams, Appl. Opt. 38,6508 (1999).
[CrossRef]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, C. C. Huang, R. Pindak, and J. A. Rogers, Appl. Phys. Lett. 81,5243 (2002).
[CrossRef]

E. Collet, in Polarized Light: Fundamental and Applications (Marcel Dekker, New York, 1990), p. 103.

P. Olivard, P. Y. Gerligand, B. Le Jeune, and J. Lotrian, J. Phys. D 32,1618 (1999).
[CrossRef]

R. M. A. Azzam, Opt. Lett. 12,558 (1987).
[CrossRef] [PubMed]

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. L. Gall, and D. Penninckx, Opt. Commun. 176,113 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of the polarimeter: (a) Fiber ferrule assembly with Polarcor Ultrathin polarizer. (b) Electrode structure. Dotted curve, perimeter of the 125µm-diameter fiber; dot at the center, core of the fiber. (c) Cross-sectional view of the polarimeter after two ferrules are assembled together.

Fig. 2
Fig. 2

(a) Evolution of the SOP of linearly polarized light on the Poincaré sphere when the optic axis of the quarter-wave plate is rotated through 180°. The linearly polarized state (at the equator) gradually evolves to the left- (at the south pole) and the right- (at the north pole) circularly polarized states with elliptically polarized states between them. The slight asymmetry is due to imperfect subtraction of the effect of the fiber. (b) Modulation depth (ΔI) as a function of the rotational frequency of the optic axis of the polarimeter. The solid curve is a guide to the eye.

Fig. 3
Fig. 3

(a) Variation of intensity as a function of time for polarized and unpolarized light. (b) Variation of the degree of polarization as a function of the DGD as measured by a NLC polarimeter and a conventional polarization analyzer .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

It=12S0+S12+S3 cos 2ωt+S12cos 4ωt+S22sin 4ωt.

Metrics