Abstract

We report on the optimization of staircase grating profiles for the case of absorbing grating materials. Using a simple numerical algorithm, we determined the grating parameters, maximizing the first-order diffraction efficiency for different numbers of staircase steps. The results show that there is a significant difference between the staircase profiles for nonnegligible and negligible absorption. The obtained solutions are of importance for diffractive optics in the soft-x-ray and extreme-ultraviolet ranges.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient high-order diffraction of extreme-ultraviolet light and soft x-rays by nanostructured volume gratings

D. Hambach, G. Schneider, and E. M. Gullikson
Opt. Lett. 26(15) 1200-1202 (2001)

Direct measurement of index of refraction in the extreme-ultraviolet wavelength region with a novel interferometer

Chang Chang, Erik Anderson, Patrick Naulleau, Eric Gullikson, Kenneth Goldberg, and David Attwood
Opt. Lett. 27(12) 1028-1030 (2002)

Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors

Ralf K. Heilmann, Minseung Ahn, Eric M. Gullikson, and Mark L. Schattenburg
Opt. Express 16(12) 8658-8669 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription