Abstract

Polarization holographic and surface-relief gratings have been recorded in an amorphous azobenzene polyester by use of a frequency-doubled argon-ion laser beam at 257 nm. Higher excited states of azobenzene in the trans and cis configurations contribute to the formation of a diffraction grating in this experiment. A combination of right and left circularly polarized writing beams has been found to give the highest diffraction efficiency. The contributions to the total phase difference that arise from anisotropy and surface relief have been separated experimentally, and it is shown that the surface-relief grating contributes a larger phase difference than that which is due to anisotropy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Horiuchi, A. Kawamura, T. Ide, T. Ishikurua, K. Nakamura, and S. Yamashita, Jpn. J. Appl. Phys. Part 2 40(3B), L275 (2001).
    [CrossRef]
  2. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, Science 292, 1899 (2001).
    [CrossRef] [PubMed]
  3. J. P. Zhang, A. Chitnis, V. Adhivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, Appl. Phys. Lett. 81, 4910 (2002).
    [CrossRef]
  4. P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, and G. Erdei, G. Szarvas, Synth. Met. 124, 145 (2001).
    [CrossRef]
  5. M. Helgert, B. Fleck, L. Wenke, S. Hvilsted, and P. S. Ramanujam, Appl. Phys. B 70, 803 (2000).
    [CrossRef]
  6. T. G. Pedersen, P. S. Ramanujam, P. M. Johansen, and S. Hvilsted, J. Opt. Soc. Am. B 15, 2721 (1998).
    [CrossRef]
  7. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optics (Springer-Verlag, Berlin, 1985), Chap. 2.
  8. N. C. R. Holme, “Photoinduced anisotropy, holographic gratings and near field optical microscopy in side-chain azobenzene polyesters,” Ph.D. dissertation (Risø National Laboratory, Roskilde, Denmark, 1997).
  9. N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
    [CrossRef]
  10. N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, Rec. Res. Dev. Appl. Phys. 2, 177 (1999).
  11. C. J. Barrett, P. L. Rochon, and A. Natansohn, J. Chem. Phys. 109, 1505 (1998).
  12. S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramaniam, J. Kumar, and S. K. Tripathy, J. Appl. Phys. 86, 4498 (1999).
    [CrossRef]
  13. K. Sumaru, T. Yamanaka, T. Fukuda, and H. Matsuda, Appl. Phys. Lett. 75, 1878 (1999).
    [CrossRef]
  14. P. Lefin, C. Fiorini, and M. Nunzi, Pure Appl. Opt. 7, 71 (1998).
    [CrossRef]
  15. T. Fukuda, K. Sumaru, T. Kimura, and H. Matsuda, J. Photochem. Photobiol. 145, 35 (2001).
    [CrossRef]
  16. Y. B. Gaididei, P. L. Christiansen, and P. S. Ramanujam, Appl. Phys. B 74, 139 (2002).
    [CrossRef]

Eichler, H. J.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optics (Springer-Verlag, Berlin, 1985), Chap. 2.

Gunter, P.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optics (Springer-Verlag, Berlin, 1985), Chap. 2.

Pohl, D. W.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optics (Springer-Verlag, Berlin, 1985), Chap. 2.

Springer Series in Optics

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optics (Springer-Verlag, Berlin, 1985), Chap. 2.

Other

N. C. R. Holme, “Photoinduced anisotropy, holographic gratings and near field optical microscopy in side-chain azobenzene polyesters,” Ph.D. dissertation (Risø National Laboratory, Roskilde, Denmark, 1997).

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, Appl. Phys. Lett. 70, 1518 (1997).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, Rec. Res. Dev. Appl. Phys. 2, 177 (1999).

C. J. Barrett, P. L. Rochon, and A. Natansohn, J. Chem. Phys. 109, 1505 (1998).

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramaniam, J. Kumar, and S. K. Tripathy, J. Appl. Phys. 86, 4498 (1999).
[CrossRef]

K. Sumaru, T. Yamanaka, T. Fukuda, and H. Matsuda, Appl. Phys. Lett. 75, 1878 (1999).
[CrossRef]

P. Lefin, C. Fiorini, and M. Nunzi, Pure Appl. Opt. 7, 71 (1998).
[CrossRef]

T. Fukuda, K. Sumaru, T. Kimura, and H. Matsuda, J. Photochem. Photobiol. 145, 35 (2001).
[CrossRef]

Y. B. Gaididei, P. L. Christiansen, and P. S. Ramanujam, Appl. Phys. B 74, 139 (2002).
[CrossRef]

K. Horiuchi, A. Kawamura, T. Ide, T. Ishikurua, K. Nakamura, and S. Yamashita, Jpn. J. Appl. Phys. Part 2 40(3B), L275 (2001).
[CrossRef]

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, Science 292, 1899 (2001).
[CrossRef] [PubMed]

J. P. Zhang, A. Chitnis, V. Adhivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, Appl. Phys. Lett. 81, 4910 (2002).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, and G. Erdei, G. Szarvas, Synth. Met. 124, 145 (2001).
[CrossRef]

M. Helgert, B. Fleck, L. Wenke, S. Hvilsted, and P. S. Ramanujam, Appl. Phys. B 70, 803 (2000).
[CrossRef]

T. G. Pedersen, P. S. Ramanujam, P. M. Johansen, and S. Hvilsted, J. Opt. Soc. Am. B 15, 2721 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum of an aromatic polyester E1aP with cyanoazobenzene chromophore: A, before irradiation and B, after irradiation at 257 nm. The break in the spectrum between 300 and 310 nm is due to a lamp change in the monochromator.

Fig. 2
Fig. 2

Experimental setup for recording polarization holographic gratings: S, shutter; HWP, half-wave plate; QWPs, quarter-wave plates; PBS, polarization beam splitter; POL, polarizer; Ms, mirrors; D, detector.

Fig. 3
Fig. 3

Diffraction efficiency plotted as a function of time for orthogonally circularly polarized UV beams for writing and a circularly polarized red beam for readout: a, 400-nm-thick film; b, 1.2µm-thick film; c, 2.1µm-thick film.

Fig. 4
Fig. 4

Diffracted power when a 1.2µm film of E1aP is irradiated with orthogonally circularly polarized beams at 257 nm as a function of time. The readout is performed at 635 nm.

Fig. 5
Fig. 5

Phase difference induced in E1aP by anisotropy (Δϕ) and surface relief (Δψ).

Metrics