Abstract

We report what is believed to be the first direct measurement of the grating phase-shift evolution during white-light illumination for the development of a fixed grating in an Fe-doped lithium niobate crystal. Stabilized holographic recording is shown to be essential for such measurements. Experimental data are in good agreement with theory and allow computation of the relevant material parameters for the sample under analysis. The results are of the utmost relevance for understanding the advantageous behavior of oxidized samples in hologram fixing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aguilar, M. Carrascosa, and F. Agulló-López, J. Opt. Soc. Am. B 14, 110 (1997).
    [CrossRef]
  2. F. Jariego and F. Agulló-López, Opt. Commun. 76, 169 (1990).
    [CrossRef]
  3. S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
    [CrossRef]
  4. K. Buse, Appl. Phys. B 64, 391 (1997).
    [CrossRef]
  5. A. Yariv, S. Orlov, G. Rakuljik, and V. Leyva, Opt. Lett. 20, 1334 (1995).
    [CrossRef] [PubMed]
  6. E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, J. Opt. Soc. Am. B 17, 1140 (2000).
    [CrossRef]
  7. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  8. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
    [CrossRef]
  9. P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
    [CrossRef]
  10. J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, J. Opt. Soc. Am. B 14, 1741 (1997).
    [CrossRef]

2000

1997

1995

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

A. Yariv, S. Orlov, G. Rakuljik, and V. Leyva, Opt. Lett. 20, 1334 (1995).
[CrossRef] [PubMed]

1991

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

1990

F. Jariego and F. Agulló-López, Opt. Commun. 76, 169 (1990).
[CrossRef]

1971

J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Aguilar, M.

Agulló-López, F.

Amodei, J.

J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

Arizmendi, L.

Bauschulte, S.

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

Buse, K.

K. Buse, Appl. Phys. B 64, 391 (1997).
[CrossRef]

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

Carrascosa, M.

Frejlich, J.

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, J. Opt. Soc. Am. B 14, 1741 (1997).
[CrossRef]

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

Fries, S.

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

Garcia, P. M.

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, J. Opt. Soc. Am. B 14, 1741 (1997).
[CrossRef]

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

Jariego, F.

F. Jariego and F. Agulló-López, Opt. Commun. 76, 169 (1990).
[CrossRef]

Kip, D.

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Krätzig, E.

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

Leyva, V.

Limeres, J.

Miguel, E. M.

Orlov, S.

Rakuljik, G.

Ringhofer, K.

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

Ringhofer, K. H.

Shamonina, E.

Yariv, A.

Appl. Phys. B

K. Buse, Appl. Phys. B 64, 391 (1997).
[CrossRef]

Appl. Phys. Lett.

J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun. 117, 235 (1995).
[CrossRef]

F. Jariego and F. Agulló-López, Opt. Commun. 76, 169 (1990).
[CrossRef]

S. Fries, S. Bauschulte, E. Krätzig, and K. Ringhofer, Opt. Commun. 84, 251 (1991).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; M, mirror; PZT, piezoelectric transducer–driven mirror; OSC, signal generator; HV, high-voltage source; INT, integrator; D1, D2, detectors; LAΩ, LA2Ω, lock-in amplifiers tuned to Ω and 2Ω, respectively; G, glass plate. For self-stabilized recording, dashed connection a is open and b is closed, and vice versa for measurement of the phase shift.

Fig. 2
Fig. 2

(left) I2Ω/IΩtan ϕ and (right) square root of the diffracted 633-nm wavelength probe beam irradiance, in arbitrary units, during development (dots) and their corresponding best theoretical fit (solid curves).

Fig. 3
Fig. 3

Evolution of ϕeh (thin curves) and Ee/Eh (thick curves) during development, for KlphND+/ND=2.2 and 1/ωR=58 min. The dashed curves are the theoretical simulation for the same quantities but for KlphND+/ND=1 and 1/ωR=26 min; all other parameters are unchanged.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Esct=-mEeff1-exp-ωR+iωIt,
Eeff=Eph+iED1+K2ls2-iKlphND+NDEph1-iKlphND+ND,
ωR=1τM1+K2ls21+K2LD21τMND-ND+ND+
ωI=-1τMKlph1+K2LD22ND+ND-KlphτMND+ND,
Klph=Eph/EqND/ND+ND+,
Eh=-EsctR=mEeff1-exp-ωR+iωItR.
dEsct/dt+ωR+iωIEsct+κωR+iωIEh=0,
1/κ1-iKlphND+/ND.
EscTt=Eh1-κ1-exp-ωR+iωIt,
ηEh2KlphND+/ND21+KlphND+/ND2×1-exp-ωR+iωIt2.
tan ϕ=EscTt/m/EscTt/m,
IΩ=4J1ψdIS0IR0η1-ηsin φ,
I2Ω=4J2ψdIS0IR0η1-ηcos φ,
tan ϕ=-1/tan φ=J1ψdI2Ω/J2ψdIΩ.
Ee/Eh=EscTt-Eh/Eh,
ϕeh=arctanEe/Eh/Ee/Eh

Metrics