Abstract

A new multiplexing method demonstrating the separation of two series of geometrically arranged fiber-optic distributed sensors in a Michelson interferometer (MI) configuration has been developed. This method can acquire data from two sensors, then propagate the data into one channel, and finally separate the data by determining their working point, which is essential for some remote measurements. The working point of one sensor was deflected from the normal MI by introduction of two reference arms. The deflection was extracted electrically and employed to label the sensor. Verification with commercial piezoelectric transducers proves the efficiency of the method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, Opt. Quantum Electron. 32, 795 (2001).
    [CrossRef]
  2. C. McGarrity, B. C. B. Chu, and D. A. Jackson, Appl. Opt. 34, 1262 (1995).
    [CrossRef] [PubMed]
  3. T. W. Murray and S. Krishnaswamy, Opt. Eng. 40, 1321 (2001).
    [CrossRef]
  4. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
    [CrossRef]
  5. Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
    [CrossRef]
  6. Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
    [CrossRef]

2001 (3)

H. Takara, Opt. Quantum Electron. 32, 795 (2001).
[CrossRef]

T. W. Murray and S. Krishnaswamy, Opt. Eng. 40, 1321 (2001).
[CrossRef]

Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
[CrossRef]

1996 (1)

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

1995 (1)

1985 (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Ansari, F.

Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
[CrossRef]

Birngruber, R.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Chen, Z.

Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
[CrossRef]

Chu, B. C. B.

Engelhardt, R.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

Jackson, D. A.

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Krishnaswamy, S.

T. W. Murray and S. Krishnaswamy, Opt. Eng. 40, 1321 (2001).
[CrossRef]

Lankenau, E.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

Li, Q.

Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
[CrossRef]

McGarrity, C.

Murray, T. W.

T. W. Murray and S. Krishnaswamy, Opt. Eng. 40, 1321 (2001).
[CrossRef]

Pan, Y.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Takara, H.

H. Takara, Opt. Quantum Electron. 32, 795 (2001).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Welzel, J.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt, J. Sel. Top. Quantum Electron. 2, 1029 (1996).
[CrossRef]

J. Struct. Control (1)

Z. Chen, Q. Li, and F. Ansari, J. Struct. Control 7, 103 (2001).
[CrossRef]

Opt. Eng. (1)

T. W. Murray and S. Krishnaswamy, Opt. Eng. 40, 1321 (2001).
[CrossRef]

Opt. Quantum Electron. (1)

H. Takara, Opt. Quantum Electron. 32, 795 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical principle, working point, and electrical circuit used to extract the deflection: A, Serial multiplexing of a normal MI and a MI with two reference arms in one system (normal fiber-optic MI configuration). LD, laser diode; PD, photodiode. B, Electrical circuit used to extract the deflection of the working point. C, Fiber-optic MI with two reference arms equivalent to sensor S1 working in A. D, Working point of MI with two reference arms with bias -β sinα. E, Normal fiber-optic MI configuration equivalent to sensor S2 working in A. F, Working point of normal MI.

Fig. 2
Fig. 2

Experimental setup for testing the FODS.

Fig. 3
Fig. 3

Acoustic event that happened near PZT 2. M and N are pulses corresponding to I0S2 and I0S1. It is difficult to say whether M or N corresponds to PZT 1 based on the fourth curve (FODS without bias), but N is obviously biased in the third curve (FODS with bias).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

IR1R1=IR1+IR1+2IR1IR1 cosφ0,
IR1S1=IR1+IS1+2IR1IS1 cosφ1,
IR1S1=IR1+IS1+2IR1IS1 cosφ2,
I0S1=IR1R1+IR1S1+IR1S1=2IR1+IR1+IS1+2IR1IR1 cosφ0+2IR1IS1 cosφ1+2IR1IS1 cosφ2=2IR1+IR1+IS1+2IR1IR1 cosφ0+2IR1IS1 cosφ1+2IR1IS1 cosφ0-φ1.
I0S2=IR2S2=IR2+IS2+2IR2IS2 cosσ,
I0S1φ1=-2IR1IS1 sinφ1+2IR1IS1 sinφ0-φ1=2IR1IS1 sinφ0cosφ1-2IR1IS1 cosφ0+2IR1IS1sinφ1=-2IR1IS1 sinφ02+2IR1IS1 cosφ0+2IR1IS121/2sinφ1+α=-β sinφ1+α,
I0S2σ=-2IR2IS2 sinσ=-χ sinσ,
α=arctanIR1 sinφ0IR1 cosφ0+IR1,
O2=O1+V=O1-RfCVitO1-RfCI0S1φ1+I0S2σ=O1+RfCβ sinφ1+α+χ sinσ,
O1Vi100 kHz<f<300 kHz0otherwise.

Metrics