Abstract

Supercontinua generated by femtosecond pulses launched in microstructure fiber can exhibit significant low-frequency (<1MHz) amplitude noise on the output pulse train. We show that this low-frequency noise is an amplified version of the amplitude noise that is already present on the input laser pulse train. Through both experimental measurements and numerical simulations, we quantify the noise amplification factor and its dependence on the supercontinuum wavelength and on the energy and duration of the input pulse. Interestingly, the dependence differs significantly from that of the broadband white-noise component, which arises from amplification of the input laser shot noise.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2000).
    [CrossRef]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]
  7. A. L. Gaeta, Opt. Lett. 27, 924 (2002).
    [CrossRef]
  8. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 27, 1174 (2002).
    [CrossRef]
  9. R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
    [CrossRef]
  10. B. R. Washburn, S. E. Ralph, and R. S. Windeler, Opt. Express 10, 575 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. For a supercontinuum with fixed width and ignorning the Raman effect, a mean of 1 is correct, but given the large fluctuations the distinction is unimportant.

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

2002 (4)

2001 (1)

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
[CrossRef]

2000 (4)

Birks, T. A.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

Ghanta, R. K.

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Hartl, I.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Kimmel, M.

Ko, T. H.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
[CrossRef]

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
[CrossRef]

Li, X. D.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

O’Shea, P.

Ralph, S. E.

Ranka, J. K.

Russell, P. S. J.

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
[CrossRef]

Shreenath, A. P.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Trebino, R.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Wadsworth, W. J.

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Windeler, R. S.

Xu, L.

Zeek, E.

IEEE J. Sel. Topics Quantum Electron. (1)

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Topics Quantum Electron. 7, 641 (2001).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Other (1)

For a supercontinuum with fixed width and ignorning the Raman effect, a mean of 1 is correct, but given the large fluctuations the distinction is unimportant.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experiment: IAC, interferometric autocorrelator; MF, microstructure fiber; OSA, optical spectrum analyzer; GM, grating-based monochromator; PD, photodiode; ESA, electrical spectrum analyzer.

Fig. 2
Fig. 2

(a) Noise amplification and (b) supercontinuum spectral power for experiment (solid curves) and theory (dashed curves) for a pulse energy of 0.85 nJ, spectral width of 45 nm, and pulse chirp of -160 fs2, corresponding to a pulse duration of 34 fs.

Fig. 3
Fig. 3

Probability distribution for the gain assuming Gaussian intensity fluctuations (dashed curve) and from the measured values (solid curve) across the supercontinuum for the range of chirp values given in Fig. 5, below. The analytical distribution had a median gain equal to the measured value of 18 dB.

Fig. 4
Fig. 4

Dependence of the gain and the -20dB spectral width on the pulse energy for experiment (solid triangles) and simulation (open circles) for a pulse duration of 47 fs, a spectral width of 42 nm, and a corresponding pulse chirp of -282 fs2. The solid lines are fits with a slope of 17 dB/nJ for the gain and 300 nm/nJ for the spectral width.

Fig. 5
Fig. 5

Dependence of the gain and the -20dB spectral width on the pulse chirp for experiment (solid triangles) and theory (open circles, dashed curve) for a pulse energy of 0.85 nJ and spectral width of 45 nm. Chirp variation from 0 to ±650 fs2 corresponds to a range of pulse widths from 20 to 90 fs FWHM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RSCf,λ0,Δλ,E0=κ2λ0,Δλ,E0RLf,
κλ0,Δλ,E0=λ0-Δλ/2λ0+Δλ/2E0dSE0dEdλλ0-Δλ/2λ0+Δλ/2SE0dλ,

Metrics