Abstract

Free-standing frequency-selective surfaces consisting of approximately 10µm-thick copper films with cross-aperture arrays are found to be tunable toward lower frequencies by means of wet chemical etching. Center frequencies were tuned from 1.57 to 1.53 THz while maintaining high transmittance. Wet etching also adjusts bandwidth, peak transmittance, and sidelobe transmittance. The advantage of the wet-etch technique is demonstrated by employment of these devices as bandpass filters for difluoromethane-based terahertz lasers. Adjustment in aperture dimensions because of etching results in suppression of a competing laser line 133.93 µm by 15 dB while maintaining high transmittance at the operating wavelength of 192.06 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review, see T. K. Wu, ed., Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  2. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
    [CrossRef]
  3. S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
    [CrossRef]
  4. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
    [CrossRef]
  5. R. Ulrich, Infrared Phys. 7, 37 (1967).
    [CrossRef]
  6. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, Appl. Opt. 33, 6046 (1994).
    [CrossRef] [PubMed]
  7. S. T. Chase and R. D. Joseph, Appl. Opt. 22, 1774 (1983).
    [CrossRef]
  8. K. D. Möller, J. B. Warren, J. B. Heaney, and C. Kotecki, Appl. Opt. 35, 6210 (1996).
    [CrossRef]
  9. C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, Appl. Opt. 38, 3961 (1999).
    [CrossRef]
  10. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, Opt. Lett. 14, 931 (1989).
    [CrossRef] [PubMed]
  11. D. A. Weitz, W. J. Skocpol, and M. Tinkham, Opt. Lett. 3, 13 (1978).
    [CrossRef] [PubMed]
  12. R. D. Rawcliffe and C. M. Randall, Appl. Opt. 6, 1353 (1967).
    [CrossRef] [PubMed]
  13. N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
    [CrossRef]
  14. L. W. Henderson, Introduction to PMM Version 4, Tech. Rep. 725347–1 (Ohio State University, Columbus, Oh., 1993).

2002

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

1999

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, Appl. Opt. 38, 3961 (1999).
[CrossRef]

1997

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

1996

1995

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

1994

1989

1983

S. T. Chase and R. D. Joseph, Appl. Opt. 22, 1774 (1983).
[CrossRef]

1978

1967

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

Chase, S. T.

S. T. Chase and R. D. Joseph, Appl. Opt. 22, 1774 (1983).
[CrossRef]

Crowe, T. W.

Dawes, D. H.

Densing, R.

Gupta, S.

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

Heaney, J. B.

Hecker, N. E.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

Helm, H.

Henderson, L. W.

L. W. Henderson, Introduction to PMM Version 4, Tech. Rep. 725347–1 (Ohio State University, Columbus, Oh., 1993).

Hesler, J. L.

Ho, K. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

Ho, K.-M.

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

Höpfel, R. A.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

Joseph, R. D.

S. T. Chase and R. D. Joseph, Appl. Opt. 22, 1774 (1983).
[CrossRef]

Kotecki, C.

Krug, P. A.

Lewen, F.

Macfarlane, J. C.

Maier, T.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

McPhedran, R. C.

Möller, K. D.

Mueller, E. R.

Paul, K. E.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

Porterfield, D. W.

Randall, C. M.

Rawcliffe, R. D.

Sawaki, N.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

Sigalas, M.

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

Sigalas, M. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

Skocpol, W. J.

Soulokous, C. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

Strasser, G.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

Tinkham, M.

Tuttle, G.

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

Ulrich, R.

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

Warren, J. B.

Weikle II, R. M.

Weinzierl, J.

Weitz, D. A.

Whitbourn, L. B.

Whitesides, G. M.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

Winnewisser, C.

Wright, W.

Wu, M.-H.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

Yang, J.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
[CrossRef]

S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
[CrossRef]

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
[CrossRef]

Infrared Phys.

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
[CrossRef]

Other

For a review, see T. K. Wu, ed., Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

L. W. Henderson, Introduction to PMM Version 4, Tech. Rep. 725347–1 (Ohio State University, Columbus, Oh., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental (circles) and theoretical (triangles) transmission spectra of filter F-22.

Fig. 2
Fig. 2

Scaling of the cross length of an aperture element of a filter developed with mask M-I as a function of etch time. The solid line is a linear fit to the data (filled circles), giving an etch rate of 0.97 µm/min. The error in cross-length measurements is less than 5%.

Fig. 3
Fig. 3

Scanning electron microscope image of the bandpass filter. The relevant geometric parameters are indicated in the image.

Fig. 4
Fig. 4

Magnified view of one cross-aperture element of Fig. 3.

Fig. 5
Fig. 5

Transmission spectra of the filters developed with photomask M-II.

Metrics