Abstract

Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated SiO2/Y2O3 λ/4 pairs mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.
  2. W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
    [CrossRef]
  3. T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
    [CrossRef]
  4. G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
    [CrossRef]
  5. L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
    [CrossRef]
  6. W. Liu and J. J. Talghader, Appl. Opt. 41, 3285 (2000).
    [CrossRef]
  7. M. Vasudevan and W. Johnson, Appl. Sci. Res. Sect. B 9, 420 (1962).
    [CrossRef]
  8. A. J. Chapman, Heat Transfer, 4th ed. (Macmillan, New York, 1984).
  9. J. H. Apfel, Appl. Opt. 20, 1024 (1981).
    [CrossRef] [PubMed]

2000 (1)

1999 (1)

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

1998 (1)

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
[CrossRef]

1997 (2)

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

1981 (1)

1962 (1)

M. Vasudevan and W. Johnson, Appl. Sci. Res. Sect. B 9, 420 (1962).
[CrossRef]

Apfel, J. H.

Bifano, T. G.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Bright, V. M.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

Castanon, D. A.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Chapman, A. J.

A. J. Chapman, Heat Transfer, 4th ed. (Macmillan, New York, 1984).

Conant, R. A.

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

Cowan, W. D.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

Dorton, J. K.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Goldstein, E. L.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
[CrossRef]

Hart, M. R.

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

Horenstein, N. M.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Johnson, W.

M. Vasudevan and W. Johnson, Appl. Sci. Res. Sect. B 9, 420 (1962).
[CrossRef]

Krishnamoorthy, R.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Lau, K. Y.

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

Lee, M. K.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

Lin, L. Y.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
[CrossRef]

Liu, W.

Middelhoek, S.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Muller, R. S.

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

Nee, J. T.

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

Perreault, J.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Roggemann, M. C.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

Sarro, P. M.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Talghader, J. J.

Tkach, R. W.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
[CrossRef]

Vandelli, N.

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

Vasudevan, M.

M. Vasudevan and W. Johnson, Appl. Sci. Res. Sect. B 9, 420 (1962).
[CrossRef]

Vdovin, G.

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Welsh, B. M.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Sci. Res. Sect. B (1)

M. Vasudevan and W. Johnson, Appl. Sci. Res. Sect. B 9, 420 (1962).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, IEEE J. Sel. Top. Quantum Electron. 5, 90 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, IEEE Photon. Technol. Lett. 10, 525 (1998).
[CrossRef]

Opt. Eng. (2)

T. G. Bifano, R. Krishnamoorthy, J. K. Dorton, J. Perreault, N. Vandelli, N. M. Horenstein, and D. A. Castanon, Opt. Eng. 36, 1354 (1997).
[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Other (2)

J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, and K. Y. Lau, in Proceedings of the IEEE Thirteenth Annual International Conference on MEMS (Institute for Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 704–709.

A. J. Chapman, Heat Transfer, 4th ed. (Macmillan, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the devices tested. The mirror is treated as a resistor. Joule heating changes the temperature of the mirror, resulting in a curvature change owing to thermal-expansion effects. (b) Interferometric images of a dielectric-coated (three SiO2/Y2O3 λ/4 pairs) mirror at room temperature I=0 mA and elevated temperature I=11.0 mA.

Fig. 2
Fig. 2

Surface profiles at room temperature and elevated temperature for (a) a gold-coated mirror and (b) a dielectric-coated mirror. In (a), the gold-coated mirror started with a 2.5-mm radius at I=0 mA and deflected toward flatness with increasing current. At I=11.6 mA, the mirror had an 8.2-mm radius. The same tuning range would take a flat mirror from an infinite radius of curvature to one of -3.6 mm. In (b), the dielectric-coated mirror started with a -0.68mm radius at I=0 mA. At I=11.0 mA, the mirror had a -0.64mm radius.

Fig. 3
Fig. 3

Radius of curvature versus applied current for (a) a gold-coated mirror and (b) a dielectric-coated mirror. Mirror radius-of-curvature data were extracted from mirror surface profiles. Also shown in the figure are the plots of estimated mirror temperature versus applied current. The relationship between mirror curvature and mirror temperature was characterized with a thermoelectric device. The result was then used to estimate mirror temperature from mirror curvature under current flow.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1/ρ=1/ρ0+CΔT,
ΔT=I2R/G,

Metrics