Abstract

Polarization vortices exist in the focus of a class of vector beams, the lowest order of which possess full vector symmetry about the axis of propagation of the beam. At high numerical apertures these beams are known to exhibit large, local, longitudinal fields in the focal region. At an interface these fields can be many times stronger than the largest available transverse component and are therefore candidates for a variety of different experiments in surface physics. The observation of vortex-driven surface second-harmonic generation at smooth metal and semiconductor surfaces and thin films is reported. By comparing the response to that of a purely transverse field, we show that the smooth surface responds primarily to the longitudinal field component.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
    [CrossRef]
  2. A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
    [CrossRef]
  3. D. G. Hall, Opt. Lett. 21, 9 (1996).
    [CrossRef] [PubMed]
  4. R. H. Jordan and D. G. Hall, Opt. Lett. 19, 427 (1994).
    [CrossRef] [PubMed]
  5. K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
    [CrossRef]
  6. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. L. E. Helseth, Opt. Commun. 191, 161 (2001).
    [CrossRef]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  10. I. Freund, Opt. Lett. 27, 1640 (2002).
    [CrossRef]
  11. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  12. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 32, 5222 (1993).
    [CrossRef] [PubMed]
  13. E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
    [CrossRef]

2002 (1)

2001 (4)

D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000 (2)

1997 (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (2)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 32, 5222 (1993).
[CrossRef] [PubMed]

E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

1990 (1)

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Biss, D. P.

Brown, T. G.

Churin, E. G.

E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Ford, D. H.

Freund, I.

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Hall, D. G.

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Helseth, L. E.

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Hossfeld, J.

E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Jarutis, V.

A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
[CrossRef]

Jordan, R. H.

Kimura, W. D.

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Orlov, S.

A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
[CrossRef]

Soskin, M. S.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Stabinis, A.

A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
[CrossRef]

Tidwell, S. C.

Tschudi, T.

E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

Vasnetsov, M. V.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Appl. Opt. (2)

Opt. Commun. (3)

E. G. Churin, J. Hossfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[CrossRef]

A. Stabinis, S. Orlov, and V. Jarutis, Opt. Commun. 197, 419 (2001).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Beam polarization patterns of (a) a radially polarized beam and (b) an azimuthally polarized beam. (c), (d) Intensity profiles for radially and longitudinally polarized field components, respectively, in the ρz plane of a focused radially polarized beam. (e) Intensity profile for a focused azimuthally polarized beam in the ρz plane.

Fig. 2
Fig. 2

Experimental setup for detection of longitudinal-field-induced SHG at a surface: OI, optical isolator; IBC, interferometric beam converter; BS, beam splitter; FO, focusing objective; CO, collection objective; PMTs photomultiplier tubes.

Fig. 3
Fig. 3

SH signal intensity (measured in the anode current of a PMT) versus average fundamental power entering the focusing objective for four sample types with a focusing N.A. of 0.9: a, Au thin film upon a glass substrate; b, Au thin film upon a Si substrate; c, Al thin film upon a glass substrate; d, Si surface. Solid curves are quadratic fits for the data sets.

Fig. 4
Fig. 4

SH signal intensity (measured in the anode current of a PMT) versus average fundamental power in milliwatts) for four focused polarization states. The beams are focused onto a Au thin film upon a glass substrate with a surface roughness of 0.7 nm rms. a, Focused radial polarization (open circles); b, focused linear polarization (squares); c, focused circular polarization (stars); d, focused azimuthal polarization (triangles).

Fig. 5
Fig. 5

SH signal intensity (measured in the anode current of a PMT) versus average fundamental power (in milliwatts) for two Au samples of different surface roughnesses. The focused beam is radially polarized. a, Surface roughness of 2.0-nm rms (triangles); b, surface roughness of 0.7-nm rms (circles).

Fig. 6
Fig. 6

Comparison of intensity line shapes at an air–glass interface for three focused polarizations: a, focused linear polarization; b, focused radial polarization, longitudinal component; c, focused radial polarization, squared longitudinal component.

Metrics