Abstract

We report, for the first time to our knowledge, achievement of all-fiber distributed Gires–Tournois etalons (DGTEs) based on fiber Bragg gratings. DGTEs with both separated structure and overlapped structure were investigated. Such grating-based DGTEs show periodic spectral characteristics that are similar to those of conventional Gires–Tournois etalons; however, they also have some particular characteristics that are due to the dispersive nature of the gratings.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
    [CrossRef]
  2. J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
    [CrossRef]
  3. A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
    [CrossRef]
  4. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McGlaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, J. Lightwave Technol. 20, 2136 (2002).
    [CrossRef]
  5. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, J. Lightwave Technol. 18, 1418 (2000).
    [CrossRef]
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
    [CrossRef]

2002

2000

1999

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

1995

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

1990

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

1986

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Ahuja, A.

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Buhl, L. L.

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Chandrasekhar, S.

Cimini, L. J.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Colbourne, P.

Eggleton, B. J.

Gnauck, A. H.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Heppner, J.

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Hulse, C. A.

Kiran, S.

Kuhl, J.

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Kuo, P.

Lamont, M.

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Lunardi, L. M.

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

McGlaughlin, S.

Mikkelsen, B.

Moss, D. J.

Nielsen, T. N.

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Randall, G.

Rogers, J. A.

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Stone, J.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Stulz, L. W.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Westbrook, P. S.

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, and L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

IEEE Trans. Quantum Electron.

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Traditional bulk-optic GTE, (b) DGTE formed by two separate FBGs, (c) DGTE formed by two overlapped CFBGs.

Fig. 2
Fig. 2

Measured reflection response of a DGTE formed by two separate uniform-period FBGs: (a) reflectivity, (b) group delay, (c) dispersion.

Fig. 3
Fig. 3

Measured reflection response of a DGTE formed by two overlapped CFBGs: (a) reflectivity, (b) group delay, (c) dispersion.

Fig. 4
Fig. 4

Design example of dispersion compensator: (a) group delay in multiple channels, (b) group delay in a single channel, (c) group-delay ripple.

Metrics