Abstract

We report, for the first time to our knowledge, achievement of all-fiber distributed Gires–Tournois etalons (DGTEs) based on fiber Bragg gratings. DGTEs with both separated structure and overlapped structure were investigated. Such grating-based DGTEs show periodic spectral characteristics that are similar to those of conventional Gires–Tournois etalons; however, they also have some particular characteristics that are due to the dispersive nature of the gratings.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
    [CrossRef]
  2. J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
    [CrossRef]
  3. A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
    [CrossRef]
  4. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McGlaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, J. Lightwave Technol. 20, 2136 (2002).
    [CrossRef]
  5. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, J. Lightwave Technol. 18, 1418 (2000).
    [CrossRef]
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
    [CrossRef]

2002 (1)

2000 (1)

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

1995 (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

1990 (1)

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

1986 (1)

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Ahuja, A.

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Buhl, L. L.

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Chandrasekhar, S.

Cimini, L. J.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Colbourne, P.

Eggleton, B. J.

Gnauck, A. H.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Heppner, J.

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Hulse, C. A.

Kiran, S.

Kuhl, J.

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Kuo, P.

Lamont, M.

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Lunardi, L. M.

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

McGlaughlin, S.

Mikkelsen, B.

Moss, D. J.

Nielsen, T. N.

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Randall, G.

Rogers, J. A.

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

Stone, J.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Stulz, L. W.

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Westbrook, P. S.

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. H. Gnauck, L. J. Cimini, J. Stone, and L. W. Stulz, IEEE Photon. Technol. Lett. 2, 585 (1990).
[CrossRef]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, IEEE Photon. Technol. Lett. 11, 1623 (1999).
[CrossRef]

IEEE Trans. Quantum Electron. (1)

J. Kuhl and J. Heppner, IEEE Trans. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

J. Lightwave Technol. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Traditional bulk-optic GTE, (b) DGTE formed by two separate FBGs, (c) DGTE formed by two overlapped CFBGs.

Fig. 2
Fig. 2

Measured reflection response of a DGTE formed by two separate uniform-period FBGs: (a) reflectivity, (b) group delay, (c) dispersion.

Fig. 3
Fig. 3

Measured reflection response of a DGTE formed by two overlapped CFBGs: (a) reflectivity, (b) group delay, (c) dispersion.

Fig. 4
Fig. 4

Design example of dispersion compensator: (a) group delay in multiple channels, (b) group delay in a single channel, (c) group-delay ripple.

Metrics