Abstract

Noncontact optical methods such as thermoreflectance, which measure temperature-induced optical reflectivity changes, are particularly suitable for obtaining high-resolution temperature mappings on integrated circuits. Unfortunately, the coefficient linking the variations of temperature and reflectivity depends on the nature of the material and can be modified when optical interferences occur in the Si3N4-based encapsulation layers protecting the circuits. We show that taking advantage of the deep UV absorption of encapsulation layers yields temperature mapping that is independent of the underlying materials. A single calibration is therefore enough to yield the temperature on any point of the uniform and thermally thin encapsulation layer. This simplification and its potential for high resolution should make UV thermoreflectance more attractive to the semiconductor industry.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
    [CrossRef]
  2. G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
    [CrossRef]
  3. A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
    [CrossRef]
  4. B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
    [CrossRef]
  5. P. W. Epperlein, Jpn. J. Appl. Phys. 32, 5514 (1993).
    [CrossRef]
  6. T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
    [CrossRef]
  7. G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998).
  8. V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
    [CrossRef]
  9. R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).
  10. J. Bauer, Phys. Status Solidi A 39, 411 (1977).
    [CrossRef]
  11. H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
    [CrossRef]
  12. G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent0116490 (December19, 2001).
  13. P. A. Heimann and R. Urstadt, Appl. Opt. 29, 495 (1990).
    [CrossRef] [PubMed]
  14. M. Switkes, M. Rothschild, and M. Salvermoser, Opt. Lett. 26, 1182 (2001).
    [CrossRef]
  15. G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
    [CrossRef]
  16. S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
    [CrossRef]

2001 (2)

M. Switkes, M. Rothschild, and M. Salvermoser, Opt. Lett. 26, 1182 (2001).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
[CrossRef]

1999 (1)

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

1998 (2)

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

1997 (1)

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

1996 (1)

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

1994 (1)

R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).

1993 (1)

P. W. Epperlein, Jpn. J. Appl. Phys. 32, 5514 (1993).
[CrossRef]

1990 (1)

1985 (1)

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

1977 (1)

J. Bauer, Phys. Status Solidi A 39, 411 (1977).
[CrossRef]

1974 (1)

C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
[CrossRef]

1973 (1)

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[CrossRef]

Abid, R.

R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).

Balk, L. J.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Bauer, J.

J. Bauer, Phys. Status Solidi A 39, 411 (1977).
[CrossRef]

Boccara, A. C.

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

Claeys, W.

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Deboy, G.

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Dilhaire, S.

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Epperlein, P. W.

P. W. Epperlein, Jpn. J. Appl. Phys. 32, 5514 (1993).
[CrossRef]

Feige, V.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Fiege, G. B. M.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Forget, B. C.

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

Fournier, D.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
[CrossRef]

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent0116490 (December19, 2001).

Gleyzes, P.

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

Görlich, S.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Grauby, S.

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

Heimann, P. A.

Holé, S.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
[CrossRef]

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent0116490 (December19, 2001).

Lewis, D.

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Maywald, M.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Miserey, F.

R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).

Opsal, J.

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

Phan, T.

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Phang, J. C. H.

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Philipp, H. R.

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[CrossRef]

Quintard, V.

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

Rothschild, M.

Salvermoser, M.

Sinnadurai, F. N.

C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
[CrossRef]

Smith, W. L.

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

Stephens, C. E.

C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
[CrossRef]

Switkes, M.

Tessier, G.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
[CrossRef]

G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent0116490 (December19, 2001).

Urstadt, R.

Willenborg, D. L.

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
[CrossRef]

A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[CrossRef]

C. R. Acad. Sci. Ser. 2 (1)

R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).

Electron. Lett. (1)

B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
[CrossRef]

J. Electrochem. Soc. (1)

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[CrossRef]

J. Phys. E (1)

C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. W. Epperlein, Jpn. J. Appl. Phys. 32, 5514 (1993).
[CrossRef]

Microelectron. Eng. (1)

V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
[CrossRef]

Microelectron. J. (1)

T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
[CrossRef]

Microelectron. Reliab. (1)

G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi A (1)

J. Bauer, Phys. Status Solidi A 39, 411 (1977).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).
[CrossRef]

Other (2)

G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent0116490 (December19, 2001).

G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for the acquisition of temperature images on integrated circuits under operation. Lock-in detection with the working frequency of the circuit as the reference gives the variations of reflectivity from which the temperature variation is deduced. Translation stages scan the sample to obtain the image. The inset shows the structure of the integrated resistor (not scaled). The dotted square represents the region under investigation. The encapsulation layer that protects electronic circuits is opaque to UV light and screens the underlying materials. This opacity ensures good homogeneity of the thermal mapping.

Fig. 2
Fig. 2

Thermal images obtained on an integrated resistor 154Ω powered with square 10-V pulses at 1600 Hz under (a) green illumination λ=511 nm and (b) UV illumination λ=240 nm. Temperature profiles calculated along the dotted lines are shown by the profiles at the right. The temperature profile of (a) is valid only on GaAs (nongray area), for which Kλ was measured. As Kλ is inhomogeneous in (a), the actual heat source appears cold. The temperature-calibrated UV image (b) shows a continuous temperature distribution.

Fig. 3
Fig. 3

Optical images obtained under (a) green illumination λ=511 nm and (b) UV illumination λ=240 nm. The Si3N4 layer, which is absorbent in the deep UV, screens the underlying materials. The reflectivity contrast that is still visible on this image ΔR=0.035 is attributed to the light that is not absorbed by Si3N4 and to the scattering by the rough surface above the gold regions.

Fig. 4
Fig. 4

Thermal phase image under UV illumination. The phase profile along the dotted line is shown at the right. A value of zero denotes a heat source located on the surface of the sample. Diffused heat on each side of the source is characterized by its nonzero phase. This could help localize buried heat sources.

Metrics