Abstract

Noncontact optical methods such as thermoreflectance, which measure temperature-induced optical reflectivity changes, are particularly suitable for obtaining high-resolution temperature mappings on integrated circuits. Unfortunately, the coefficient linking the variations of temperature and reflectivity depends on the nature of the material and can be modified when optical interferences occur in the Si3N4-based encapsulation layers protecting the circuits. We show that taking advantage of the deep UV absorption of encapsulation layers yields temperature mapping that is independent of the underlying materials. A single calibration is therefore enough to yield the temperature on any point of the uniform and thermally thin encapsulation layer. This simplification and its potential for high resolution should make UV thermoreflectance more attractive to the semiconductor industry.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription