Abstract

We introduce novel types of spatial vector soliton that can be generated in anisotropic optical media, such as tetragonal crystals with third-order nonlinear susceptibility. We demonstrate that these vector solitons provide a nontrivial generalization to both conventional vector solitons of birefringent cubic media and parametric solitons supported by third-order cascaded nonlinearities.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 53 (1988).
    [CrossRef] [PubMed]
  2. M. Haelterman, A. P. Sheppard, and A. W. Snyder, Opt. Lett. 18, 1406 (1993).
    [CrossRef] [PubMed]
  3. J. S. Aitchison, D. C. Hutchings, J. M. Arnold, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, J. Opt. Soc. Am. B 14, 3032 (1997).
    [CrossRef]
  4. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
    [CrossRef] [PubMed]
  5. E. A. Ostrovskaya, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, J. Opt. Soc. Am. B 14, 880 (1997).
    [CrossRef]
  6. R. W. Hellwarth, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. V, p. 1.
  7. We consider the cases when the possible χ2 components are zeros because of the selection of the propagation direction.
  8. S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
    [CrossRef]
  9. A. D. Petrenko and N. I. Zheludev, Opt. Acta 31, 1177 (1984).
    [CrossRef]
  10. R. A. Sammut, A. V. Buryak, and Yu. S. Kivshar, Opt. Lett. 22, 1385 (1997).
    [CrossRef]
  11. Yu. S. Kivshar, T. J. Alexander, and S. Saltiel, Opt. Lett. 24, 759 (1999).
    [CrossRef]

1999 (1)

1997 (3)

1996 (1)

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
[CrossRef]

1988 (1)

1984 (1)

A. D. Petrenko and N. I. Zheludev, Opt. Acta 31, 1177 (1984).
[CrossRef]

Aitchison, J. S.

Akhmediev, N.

Akhmediev, N. N.

Alexander, T. J.

Arnold, J. M.

Buryak, A. V.

Christodoulides, D. N.

Goldberg, S. Y.

S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
[CrossRef]

Haelterman, M.

Hellwarth, R. W.

R. W. Hellwarth, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. V, p. 1.

Huppert, D.

S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
[CrossRef]

Hutchings, D. C.

Joseph, R. I.

Kang, J. U.

Kivshar, Yu. S.

Ostrovskaya, E.

Ostrovskaya, E. A.

Petrenko, A. D.

A. D. Petrenko and N. I. Zheludev, Opt. Acta 31, 1177 (1984).
[CrossRef]

Saltiel, S.

Saltiel, S. M.

S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
[CrossRef]

Sammut, R. A.

Sheppard, A. P.

Snyder, A. W.

Stegeman, G. I.

Zheludev, N. I.

A. D. Petrenko and N. I. Zheludev, Opt. Acta 31, 1177 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Acta (1)

A. D. Petrenko and N. I. Zheludev, Opt. Acta 31, 1177 (1984).
[CrossRef]

Opt. Commun. (1)

S. M. Saltiel, S. Y. Goldberg, and D. Huppert, Opt. Commun. 84, 189 (1991).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

Other (2)

R. W. Hellwarth, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. V, p. 1.

We consider the cases when the possible χ2 components are zeros because of the selection of the propagation direction.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Bifurcation diagram for vector solitons in (a) cubic and (b) tetragonal crystals for σ1=σ2=2/3. Dotted curves, elliptic polarization; solid curves, linearly polarized solitons with in-phase components; dashed curves, linearly polarized solitons with out-of-phase components. O1 and O2 are the bifurcation points.

Fig. 2
Fig. 2

Characteristic profiles of the vector solitons in tetragonal crystals: (a) in-phase and (b) out-of-phase linearly polarized solitons corresponding to the A and B in Fig. 1(b); (c) amplitude and (d) phase profiles of elliptically polarized solitons [point C in Fig. 1(b)].

Fig. 3
Fig. 3

Generation of type A vector soliton by an x-polarized input Gaussian beam: (a) peak intensities of two polarization components, (b) spatial evolution of the y-polarized beam component.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Px=3/82χxxxy3Ex2Ey+2χxyxy3Ey2Ex+χxxyy3Ex*Ey2+χxxxy3Ey*Ex2-χxxxy3Ey2Ey+χxxxx3Ex2Ex,Py=3/8-2χxxxy3Ey2Ex+2χxyxy3Ex2Ey+χxxyy3Ey*Ex2+χxxxy3Ex2Ex-χxxxy3Ex*Ey2+χxxxx3Ey2Ey,
iAxz+12K2Axx2+KxAx+2πω2SKc2PzAx,Ay=0,iAyz+12K2Ayx2+KyAy+2πω2SKc2PyAx,Ay=0,
iuZ+2uX2+u2+2σ1v2u + σ2v2u*+γu2v*+2γu2-γv2v=0,ivZ+2vX2-δv+v2+2σ1u2v + σ2u2v*-γv2u*+γu2-2γv2u=0,
u0xC=v0x=2CβC3+σC+3γC2-γ1/2sechβx,
u0x=±iv0x=2β/1+2σ1-σ21/2sechβx,

Metrics