Abstract

It is shown that the mean instantaneous intensity (MII) of a pulse propagating in an optical fiber affected by polarization mode dispersion is related to the frequency autocorrelation of the fiber’s Jones matrix through a Fourier transform. A simple derivation of the diffusion equation satisfied by the MII and the autocorrelation function of a Jones matrix is described.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Norimatsu and M. Maruoka, J. Lightwave Technol. 20, 19–27 (2002).
    [CrossRef]
  2. G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
    [CrossRef]
  3. M. Karlsson and J. Brentel, Opt. Lett. 24, 939 (1999).
    [CrossRef]
  4. M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
    [CrossRef]
  5. M. Shtaif and A. Mecozzi, Opt. Lett. 25, 707 (2000).
    [CrossRef]
  6. A. Vannucci and A. Bononi, J. Lightwave Technol. 20, 783 (2002).
  7. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 3.
  8. S. J. Savory and F. P. Payne, J. Lightwave Technol. 19, 350 (2001).
    [CrossRef]
  9. J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [CrossRef]
  10. M. Karlsson, Opt. Lett. 23, 688 (1998).
    [CrossRef]

2002 (2)

2001 (1)

2000 (3)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
[CrossRef]

M. Shtaif and A. Mecozzi, Opt. Lett. 25, 707 (2000).
[CrossRef]

1999 (1)

1998 (1)

1991 (1)

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Bononi, A.

Brentel, J.

Foschini, G. J.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 3.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

Karlsson, M.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

Maruoka, M.

Mecozzi, A.

M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
[CrossRef]

M. Shtaif and A. Mecozzi, Opt. Lett. 25, 707 (2000).
[CrossRef]

Nagel, J. A.

M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
[CrossRef]

Norimatsu, S.

Payne, F. P.

Poole, C. D.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Savory, S. J.

Shtaif, M.

M. Shtaif and A. Mecozzi, Opt. Lett. 25, 707 (2000).
[CrossRef]

M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
[CrossRef]

Vannucci, A.

IEEE Photon. Technol. Lett. (1)

M. Shtaif, A. Mecozzi, and J. A. Nagel, IEEE Photon. Technol. Lett. 12, 53 (2000).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

Other (1)

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

MII of a filtered square pulse for several values of z: z=0 (dashed curve); z/L=0.25 (simulation, open circles; theory, solid curve); z/L=0.5 (simulation, pluses; theory, solid curve); and z/L=1 (simulation, asterisks; theory, solid curve).

Fig. 2
Fig. 2

ACF γΔω;z for three values of z: z/L=0.25 (simulation, open circles; theory, solid curve); z/L=0.5 (simulation, pluses; theory, solid curve); and z/L=1 (simulation, asterisks; theory, solid curve).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I¯t,z=--E˜ω,0Γω,Δω,zE˜ω+Δω,0×exp-jΔωtdωdΔω.
Tω,z+Δz=exp-½jωβ·σΔzTω,z,
Γω,Δω;z+Δz=Tω,zexp-½jΔωβ·σΔz×Tω+Δω,z.
exp-½jΔωβ·σΔz=I cos½ΔωβΔz-jβˆ·σsin½ΔωβΔz=I cos½ΔωβΔz,
Γω,Δω;z+Δz=cos½ΔωβΔzΓω,Δω;z.
I¯t,z=-I¯Δω;0γΔω;zexp-jΔωtdΔω,
I¯t,z+dz=-I¯Δω;0γΔω;zcos½ΔωβΔz×exp-jΔωtdΔω=½I¯t-½βΔz,z+½I¯t+½βΔz,z.
1ΔzI¯t,z+Δz-I¯t,z=η2Δt2I¯t-Δt,z-2I¯t,z+I¯t+Δt,z.
I¯t,zz=η82I¯t,zt2.
I¯t,z=I¯t,02πzηexp-2t2zη,
I¯Δω,z=I¯Δω,0γΔω;z=I¯Δω,0exp-Δω2zη/8.

Metrics