Abstract

Production and amplification of radially and azimuthally (tangentially) polarized laser beams are demonstrated. Based on the different focusing between radially and tangentially polarized light in thermally stressed isotropic laser rods, Nd:YAG laser oscillators were developed to produce low-loss stable oscillation in a single polarization. Pure radially polarized light at 70 W with M2=2 and on-axis impure radially polarized light at 150 W with M2=2.5 were achieved. The radially polarized beams were then amplified while good beam quality and polarization purity were retained. Complete elimination of thermal-birefringence-induced aberrations was demonstrated. This should allow much better beam quality from rod-based high-power lasers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  2. Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
    [CrossRef]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  4. Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
    [CrossRef]
  5. A. A. Tovar, J. Opt. Soc. Am. A 15, 2705 (1998).
    [CrossRef]
  6. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]
  7. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  8. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  9. J. D. Foster and L. M. Osternik, J. Appl. Phys. 41, 3656 (1970).
    [CrossRef]
  10. C. Kennedy, Appl. Opt. 41, 6991 (2002).
    [CrossRef] [PubMed]
  11. I. Moshe, S. Jackel, and R. Lallouz, Appl. Opt. 37, 6415 (1998).
    [CrossRef]

2002

2000

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

1999

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
[CrossRef]

1998

1972

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
[CrossRef]

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

1970

J. D. Foster and L. M. Osternik, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Cline, D.

Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Foster, J. D.

J. D. Foster and L. M. Osternik, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

He, P.

Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
[CrossRef]

Jackel, S.

Kennedy, C.

Lallouz, R.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Liu, Y.

Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
[CrossRef]

Matsumura, K.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
[CrossRef]

Moshe, I.

Mushiake, Y.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
[CrossRef]

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Osternik, L. M.

J. D. Foster and L. M. Osternik, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Tovar, A. A.

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

J. Appl. Phys.

J. D. Foster and L. M. Osternik, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. A 424, 296 (1999).
[CrossRef]

Opt. Commun.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Proc. IEEE Lett.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE Lett. 60, 1107 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Half-symmetric resonator schematic.

Fig. 2
Fig. 2

Output power and extinction ratio (tangential polarization/radial polarization) results from the half-symmetric resonator for various apertures.

Fig. 3
Fig. 3

Tangentially polarized intensity distributions at the rod aperture (a) without the analyzing polarizer, (b) for vertical polarization, (c), for horizontal polarization, and (d) at the front-mirror waist (nonpolarized).

Fig. 4
Fig. 4

Symmetric resonator scheme.

Fig. 5
Fig. 5

Images of near- and far-field intensity distribution from the symmetric plano–plano and plano–convex resonators after passage of the beam through a horizontal, vertical, or 45°-oriented polarizer.

Fig. 6
Fig. 6

Comparison of beam-quality degradation in a single-pass laser amplifier by use of radially polarized or unpolarized probe beams. TEM00 and TEM01 beam-quality comparison reference’s also included.

Metrics