Abstract

Dispersion-compensating fiber Bragg gratings with 99.9% reflectivity that are made by continuous apodization and phase control are demonstrated. These strong dispersion-compensating gratings provide precision second-order, third-order, or even more complex dispersion compensation, as well as sufficient transmission isolation to be used at add–drop stages without additional filtering. A 99.84% grating with a constant -700-ps/nm dispersion and a 99.94% grating with dispersion varying linearly from 1000 to -1000 ps/nm are demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.
  2. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
    [CrossRef]
  3. L. Poladian, Opt. Lett. 25, 787 (2000).
    [CrossRef]
  4. J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
    [CrossRef]
  5. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.
  6. M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.
  7. M. Ibsen and R. Feced, in Optical Fiber Communications Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA7-1.
  8. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
    [CrossRef]
  9. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
    [CrossRef]

2001 (3)

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Durkin, M. K.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.

Ellis, A. D.

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.

M. Ibsen and R. Feced, in Optical Fiber Communications Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA7-1.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.

Ibsen, M.

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

M. Ibsen and R. Feced, in Optical Fiber Communications Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA7-1.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Petropoulos, P.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.

Poladian, L.

Ramirez, C.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.

Richardson, D. J.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Teh, P. C.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.

IEEE J. Quantum Electron. (2)

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 154 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Other (4)

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD21.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuH4-1.

M. Ibsen and R. Feced, in Optical Fiber Communications Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA7-1.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, presented at the European Conference on Optical Communication, Munich, Germany, September 4–7, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Grating design for a 25-GHz 99.9% filter with -700-ps/nm of dispersion.

Fig. 2
Fig. 2

Target and measured reflection and delay of the grating design shown in Fig. 1.

Fig. 3
Fig. 3

Target and measured transmission and transmission dispersion of the grating design shown in Fig. 2.

Fig. 4
Fig. 4

Grating design for a 25-GHz 99.9% filter with dispersion linearly varying from -1000 to 1000 ps/nm.

Fig. 5
Fig. 5

Target and measured reflection and delay of the grating design shown in Fig. 4.

Fig. 6
Fig. 6

Target and measured transmission and transmission dispersion with the grating design shown in Fig. 4.

Metrics