Abstract

It is well known that the superposition of two identical random dot patterns may give rise to a particular form of moiré effect known as a Glass pattern. Surprisingly, new research results show that if one chooses appropriate dot shapes for each of the two random dot patterns, while keeping the random dot locations in both layers identical, it is possible to synthesize in the superposition a Glass pattern having any desired shape and intensity profile.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Glass, Nature 223, 578 (1969).
    [CrossRef] [PubMed]
  2. L. Glass and R. Pérez, Nature 246, 360 (1973).
    [CrossRef] [PubMed]
  3. I. Amidror, The Theory of the Moiré Phenomenon (Kluwer, Dordrecht, The Netherlands, 2000).
    [CrossRef]
  4. http://lspwww.epfl.ch/books/moire/kit.html .
  5. S. C. Dakin, Vision Res. 37, 2227 (1997).
    [CrossRef] [PubMed]
  6. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993), pp. 99–139.
  7. I. Amidror, Proc. SPIE 4677, 89 (2002).
    [CrossRef]

2002 (1)

I. Amidror, Proc. SPIE 4677, 89 (2002).
[CrossRef]

1997 (1)

S. C. Dakin, Vision Res. 37, 2227 (1997).
[CrossRef] [PubMed]

1973 (1)

L. Glass and R. Pérez, Nature 246, 360 (1973).
[CrossRef] [PubMed]

1969 (1)

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

Amidror, I.

I. Amidror, Proc. SPIE 4677, 89 (2002).
[CrossRef]

I. Amidror, The Theory of the Moiré Phenomenon (Kluwer, Dordrecht, The Netherlands, 2000).
[CrossRef]

Dakin, S. C.

S. C. Dakin, Vision Res. 37, 2227 (1997).
[CrossRef] [PubMed]

Glass, L.

L. Glass and R. Pérez, Nature 246, 360 (1973).
[CrossRef] [PubMed]

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

Patorski, K.

K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993), pp. 99–139.

Pérez, R.

L. Glass and R. Pérez, Nature 246, 360 (1973).
[CrossRef] [PubMed]

Nature (2)

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

L. Glass and R. Pérez, Nature 246, 360 (1973).
[CrossRef] [PubMed]

Proc. SPIE (1)

I. Amidror, Proc. SPIE 4677, 89 (2002).
[CrossRef]

Vision Res. (1)

S. C. Dakin, Vision Res. 37, 2227 (1997).
[CrossRef] [PubMed]

Other (3)

K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993), pp. 99–139.

I. Amidror, The Theory of the Moiré Phenomenon (Kluwer, Dordrecht, The Netherlands, 2000).
[CrossRef]

http://lspwww.epfl.ch/books/moire/kit.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Superposition of two identical aperiodic dot screens with a small angle difference gives a moiré effect in the form of a Glass pattern about the center of rotation. (b) When the superposed layers are periodic, a Glass pattern is still generated about the center of rotation, but because of the periodicity of the layers, this pattern is periodically repeated throughout the superposition, thus generating a periodic moiré pattern.

Fig. 2
Fig. 2

Superposition of a random dot screen consisting of 1-shaped dots and a random dot screen consisting of small white dots (pinholes), where the dot locations in both screens are identical, gives a single 1-shaped moiré intensity profile (Glass pattern).

Fig. 3
Fig. 3

Periodic counterpart: The superposition of a periodic dot screen consisting of 1-shaped dots and a periodic dot screen consisting of small white dots (pinholes) gives a periodic 1-shaped moiré intensity profile.

Metrics