Abstract

We propose and demonstrate a reflection-type optical modulator, with surface-normal architecture, that exploits the optical saturation of absorption in semiconductor quantum wells. The modulation section of the modulator, which is composed of quantum wells placed within a Fabry–Perot cavity, is optically controlled by an intensity-modulated beam generated by an in-plane laser integrated monolithically on the same wafer and grown in a single epitaxial step. The modulation section and the in-plane laser share the same medium; therefore, efficient coupling between the control beam and the signal beam is achieved. The device was successfully used for active mode locking of an erbium-doped fiber laser.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
    [CrossRef]
  2. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, Opt. Lett. 25, 1418 (2000).
    [CrossRef]
  3. P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
    [CrossRef]
  4. L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
    [CrossRef]
  5. M. Whitehead and G. Parry, Electron. Lett. 25, 566 (1989).
    [CrossRef]
  6. R. H. Yan and L. A. Coldren, Appl. Phys. Lett. 57, 267 (1990).
    [CrossRef]
  7. H. S. Loka and P. W. E. Smith, IEEE Photon. Technol. Lett. 10, 1733 (1998).
    [CrossRef]
  8. N. H. Bonadeo, W. H. Knox, J. M. Roth, and K. Bergman, Opt. Lett. 25, 1421 (2000).
    [CrossRef]
  9. M. Guina and O. G. Okhotnikov, Appl. Phys. B 75, 127 (2002).
    [CrossRef]
  10. N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
    [CrossRef]

2002 (1)

M. Guina and O. G. Okhotnikov, Appl. Phys. B 75, 127 (2002).
[CrossRef]

2001 (1)

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

2000 (2)

1999 (1)

E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
[CrossRef]

1998 (1)

H. S. Loka and P. W. E. Smith, IEEE Photon. Technol. Lett. 10, 1733 (1998).
[CrossRef]

1995 (1)

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

1990 (2)

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

R. H. Yan and L. A. Coldren, Appl. Phys. Lett. 57, 267 (1990).
[CrossRef]

1989 (1)

M. Whitehead and G. Parry, Electron. Lett. 25, 566 (1989).
[CrossRef]

Babushkin, A. V.

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

Bergman, K.

Bonadeo, N. H.

Brovelli, L. R.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Coldren, L. A.

R. H. Yan and L. A. Coldren, Appl. Phys. Lett. 57, 267 (1990).
[CrossRef]

Cunningham, J. E.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Goossen, K. W.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Guina, M.

M. Guina and O. G. Okhotnikov, Appl. Phys. B 75, 127 (2002).
[CrossRef]

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Keller, U.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Knox, W. H.

Lanker, M.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Loka, H. S.

H. S. Loka and P. W. E. Smith, IEEE Photon. Technol. Lett. 10, 1733 (1998).
[CrossRef]

Nakazawa, M.

E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
[CrossRef]

Okhotnikov, O. G.

M. Guina and O. G. Okhotnikov, Appl. Phys. B 75, 127 (2002).
[CrossRef]

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

Parry, G.

M. Whitehead and G. Parry, Electron. Lett. 25, 566 (1989).
[CrossRef]

Pessa, M.

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

Roth, J. M.

Shimizu, N.

E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
[CrossRef]

Smith, P. W. E.

H. S. Loka and P. W. E. Smith, IEEE Photon. Technol. Lett. 10, 1733 (1998).
[CrossRef]

Sysoliatin, A.

Taylor, J. R.

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

Vainionpää, A.

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

Vukusic, J. I.

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

Walker, J. A.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

Whitehead, M.

M. Whitehead and G. Parry, Electron. Lett. 25, 566 (1989).
[CrossRef]

Wigley, P. G. J.

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

Wong, W. S.

Xiang, N.

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

Yan, R. H.

R. H. Yan and L. A. Coldren, Appl. Phys. Lett. 57, 267 (1990).
[CrossRef]

Yoshida, E.

E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
[CrossRef]

Yu, C. X.

Appl. Phys. B (1)

M. Guina and O. G. Okhotnikov, Appl. Phys. B 75, 127 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Yan and L. A. Coldren, Appl. Phys. Lett. 57, 267 (1990).
[CrossRef]

Electron. Lett. (3)

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, Electron. Lett. 31, 381 (1995).
[CrossRef]

M. Whitehead and G. Parry, Electron. Lett. 25, 566 (1989).
[CrossRef]

N. Xiang, O. G. Okhotnikov, A. Vainionpää, M. Guina, and M. Pessa, Electron. Lett. 37, 374 (2001).
[CrossRef]

IEEE Photon Technol. Lett. (1)

P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor, IEEE Photon Technol. Lett. 2, 543 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. S. Loka and P. W. E. Smith, IEEE Photon. Technol. Lett. 10, 1733 (1998).
[CrossRef]

E. Yoshida, N. Shimizu, and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 1587 (1999).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Top view and (b) cross-sectional view of a SAIM.

Fig. 2
Fig. 2

Variation in nonlinear reflectivity versus input pulse energy for optical pumping with 1-ps-duration pulses.

Fig. 3
Fig. 3

Wavelength dependence of the off-state low-intensity reflectivity and right, the modulation index for the as-grown modulator (dotted–dashed curves) and the highly reflective coated modulator (solid curves).

Fig. 4
Fig. 4

Modulation index and IPCL output versus amplitude of the injection current. Signal wavelength, 1543.5 nm.

Fig. 5
Fig. 5

Scope trace of the actively mode-locked pulse train.

Fig. 6
Fig. 6

rf spectrum of the mode-locked laser output for operation on the fourth harmonic of the fundamental frequency. Resolution bandwidth, 1 kHz.

Metrics