Abstract

We have achieved dual synchronization of chaos in two pairs of one-way coupled Nd:YVO4 microchip lasers, using only one transmission channel, by experiment and numerical calculation. We observed the individual synchronization of chaos in each pair of two lasers by adjusting the optical frequencies for injection locking between the corresponding pairs. The achievement of dual synchronization is dependent on the injection-locking condition, which is different from the locking condition for a single pair of lasers because of the presence of an additional injection signal from the master laser of the other pair.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
    [CrossRef] [PubMed]
  2. J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
    [CrossRef]
  3. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
    [CrossRef] [PubMed]
  4. T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
    [CrossRef] [PubMed]
  5. S. Sivaprakasam and K. A. Shore, Opt. Lett. 24, 466 (1999).
    [CrossRef]
  6. A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
    [CrossRef]
  7. L. S. Tsimring and M. M. Sushchik, Phys. Lett. A 213, 155 (1996).
    [CrossRef]
  8. Y. Liu and P. Davis, Phys. Rev. E 61, R2176 (2000).
    [CrossRef]

2000

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

Y. Liu and P. Davis, Phys. Rev. E 61, R2176 (2000).
[CrossRef]

1999

1998

G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
[CrossRef] [PubMed]

J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[CrossRef]

1996

L. S. Tsimring and M. M. Sushchik, Phys. Lett. A 213, 155 (1996).
[CrossRef]

1994

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

1990

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

Davis, P.

Y. Liu and P. Davis, Phys. Rev. E 61, R2176 (2000).
[CrossRef]

Goedgebuer, J.-P.

J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[CrossRef]

Kannari, F.

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

Larger, L.

J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[CrossRef]

Liu, Y.

Y. Liu and P. Davis, Phys. Rev. E 61, R2176 (2000).
[CrossRef]

Ogawa, T.

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

Pecora, L. M.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

Porte, H.

J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[CrossRef]

Roy, R.

G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
[CrossRef] [PubMed]

Shimizu, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

Shinozuka, M.

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

Shore, K. A.

Sivaprakasam, S.

Sugawara, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

Sushchik, M. M.

L. S. Tsimring and M. M. Sushchik, Phys. Lett. A 213, 155 (1996).
[CrossRef]

Tachikawa, M.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

Tsimring, L. S.

L. S. Tsimring and M. M. Sushchik, Phys. Lett. A 213, 155 (1996).
[CrossRef]

Tsukamoto, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

Uchida, A.

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Lett. A

L. S. Tsimring and M. M. Sushchik, Phys. Lett. A 213, 155 (1996).
[CrossRef]

Phys. Rev. E

Y. Liu and P. Davis, Phys. Rev. E 61, R2176 (2000).
[CrossRef]

Phys. Rev. E

A. Uchida, T. Ogawa, M. Shinozuka, and F. Kannari, Phys. Rev. E 62, 1960 (2000).
[CrossRef]

Phys. Rev. Lett.

J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[CrossRef]

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
[CrossRef] [PubMed]

Science

G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for dual synchronization of chaos: BS’s, beam splitters; F-P, Fabry–Perot interferometer; IS’s, optical isolators; L’s, lenses; LD’s, laser diodes; M’s mirrors; MCL’s, Nd:YVO4 microchip lasers; PD’s, photodiodes; PM’s, pump modulators; VA, variable attenuator.

Fig. 2
Fig. 2

Temporal waveforms and their correlation plots for the pairs (a), (b) M1–S1; (c), (d) M2–S2; and (e), (f) M2–S1.

Fig. 3
Fig. 3

Experimental results showing the accuracy of synchronization of chaos for the pair M1–S1 as functions of (a) the beat frequency of M2–S1 and (b) the injection power ratio of M2 to M1. (a) The power ratio was fixed at -2.5 dB for the thick solid curve, -14 dB for the dashed curve, and -21 dB for the thin solid curve. (b) The beat frequency was fixed at 50 MHz for the thick solid curve, 260 MHz for the dashed curve, and 500 MHz for the thin solid curve.

Fig. 4
Fig. 4

Numerical results corresponding to Fig. 3.

Metrics