Abstract

We describe a mid-infrared spectrometer that is based on the combination of a multiple-pass absorption cell and a submicrosecond pulsed quantum-cascade laser. The spectrometer is capable of both making sensitive measurements and providing a real-time display of the spectral fingerprint of molecular vapors. For a cell with a path length of 9.6 m, dilution measurements made of the ν9 band transitions of 1,1-difluoroethylene indicate a sensitivity of 500 parts in 109, corresponding to a fractional absorbance of 4×10-4.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002), and references therein.
    [CrossRef]
  2. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Opt. Lett. 23, 219 (1998).
    [CrossRef]
  3. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 39, 6866 (2000).
    [CrossRef]
  4. E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
    [CrossRef]
  5. E. Normand, N. Langford, and G. Duxbury, “Semiconductor diode laser arrangement,” UK patent application GB0208100.8 (April9, 2002).
  6. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Opt. Lett. 23, 1396 (1998).
    [CrossRef]

2002 (1)

A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002), and references therein.
[CrossRef]

2001 (1)

E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
[CrossRef]

2000 (1)

1998 (2)

Baillargeon, J. N.

Cai, S.

Capasso, F.

Cho, A. Y.

Duxbury, G.

E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
[CrossRef]

E. Normand, N. Langford, and G. Duxbury, “Semiconductor diode laser arrangement,” UK patent application GB0208100.8 (April9, 2002).

Faist, J.

Gmachl, C.

Hartman, J. S.

Hutchinson, A. L.

Kelly, J. F.

Kosterev, A. A.

Langford, N.

E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
[CrossRef]

E. Normand, N. Langford, and G. Duxbury, “Semiconductor diode laser arrangement,” UK patent application GB0208100.8 (April9, 2002).

Namjou, K.

Normand, E.

E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
[CrossRef]

E. Normand, N. Langford, and G. Duxbury, “Semiconductor diode laser arrangement,” UK patent application GB0208100.8 (April9, 2002).

Sharpe, S. W.

Sivco, D. L.

Tittel, F. K.

Whittaker, E. A.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002), and references therein.
[CrossRef]

Opt. Commun. (1)

E. Normand, G. Duxbury, and N. Langford, Opt. Commun. 197, 115 (2001).
[CrossRef]

Opt. Lett. (2)

Other (1)

E. Normand, N. Langford, and G. Duxbury, “Semiconductor diode laser arrangement,” UK patent application GB0208100.8 (April9, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical temporal and spectral profiles of a pulse emitted by the QC laser.

Fig. 2
Fig. 2

(a) Comparison of the spectrum of 1,1-difluoroethylene as measured by use of FTS when either a blackbody (top trace) or a QC laser (bottom trace) acts as the light source. (b) Expanded view of the traces shown in (a).

Fig. 3
Fig. 3

Output from the spectrometer (b) when no 1,1-difluoroethylene is present and (c) when 1,1-difluoro-ethylene is present. (a) Reference transmission spectrum of 1,1-difluoroethylene.

Fig. 4
Fig. 4

Bottom, computed absorbance profile together with top, a reference transmission spectrum of 1,1-difluoroethylene.

Metrics