Abstract

We show that, when a partially coherent beam propagates through an inhomogeneous medium such as atmospheric turbulence, the phase randomization that is induced is less effective in degrading the spatial coherence properties. By evaluating the final beam widths we report what is to our knowledge the first experimental demonstration that, on propagation through thermally induced turbulence, a partially coherent beam is less affected than a spatially coherent beam.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf and E. Collett, Opt. Commun. 25, 293 (1978).
    [Crossref]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U., Cambridge, 1995).
    [Crossref]
  3. J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
    [Crossref]
  4. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa, J. Opt. Soc. Am. A 16, 106 (1999).
    [Crossref]
  5. G. Gbur and E. Wolf, Opt. Commun. 199, 295 (2001).
    [Crossref]
  6. G. Gbur and E. Wolf, J. Opt. Soc. Am. A,  19, 1592 (2002).
    [Crossref]
  7. F. Gori, C. Palma, and M. Santarsiero, Opt. Commun. 74, 353 (1990).
    [Crossref]

2002 (1)

2001 (1)

G. Gbur and E. Wolf, Opt. Commun. 199, 295 (2001).
[Crossref]

1999 (1)

1991 (1)

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[Crossref]

1990 (1)

F. Gori, C. Palma, and M. Santarsiero, Opt. Commun. 74, 353 (1990).
[Crossref]

1978 (1)

E. Wolf and E. Collett, Opt. Commun. 25, 293 (1978).
[Crossref]

Boardman, A. D.

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[Crossref]

Borghi, R.

Cincotti, G.

Collett, E.

E. Wolf and E. Collett, Opt. Commun. 25, 293 (1978).
[Crossref]

Gbur, G.

G. Gbur and E. Wolf, J. Opt. Soc. Am. A,  19, 1592 (2002).
[Crossref]

G. Gbur and E. Wolf, Opt. Commun. 199, 295 (2001).
[Crossref]

Gori, F.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U., Cambridge, 1995).
[Crossref]

Palma, C.

F. Gori, C. Palma, and M. Santarsiero, Opt. Commun. 74, 353 (1990).
[Crossref]

Santarsiero, M.

Vahimaa, P.

Wolf, E.

G. Gbur and E. Wolf, J. Opt. Soc. Am. A,  19, 1592 (2002).
[Crossref]

G. Gbur and E. Wolf, Opt. Commun. 199, 295 (2001).
[Crossref]

E. Wolf and E. Collett, Opt. Commun. 25, 293 (1978).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U., Cambridge, 1995).
[Crossref]

Wu, J.

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[Crossref]

J. Mod. Opt. (1)

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

F. Gori, C. Palma, and M. Santarsiero, Opt. Commun. 74, 353 (1990).
[Crossref]

G. Gbur and E. Wolf, Opt. Commun. 199, 295 (2001).
[Crossref]

E. Wolf and E. Collett, Opt. Commun. 25, 293 (1978).
[Crossref]

Other (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U., Cambridge, 1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to generate a PCB with adjustable coherence properties and to record the width of the beam in the far field.

Fig. 2
Fig. 2

Waist of a PCB with different coherence properties after propagation in free space and through a 40-cm layer of thermally induced turbulence. Also shown are the corresponding waists of the partially coherent beam.

Fig. 3
Fig. 3

Relative spreading factor f calculated from beam widths of the several PCBs indicated in Fig. 2. The solid line is a fit with dependence indicated in expression (7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Iρ,z=1λzW120×expiπλzξ12-ξ22-2ρξ1-ξ2dξ1dξ2.
ρ2z¯=ρ2Iρ,zd2ρIρ,zd2ρ,
ρ2z¯=σI2+σJ2z2+Tz3,
fCB=σI2+Tz3σI2,
fPCB=σI2+σJ2z2+Tz3σI2+σJ2z2.
f=fCB-1fPCB-1=1+σJ2σI2z2>1.
f=1+λ2π21w041+w02σμ2z21+1π2λ2σμ2z2w02.

Metrics