Abstract

We demonstrate and characterize the generation of single-tone frequency-modulated and frequency-doubled radiation at 400 MHz and 430 nm. We obtained the radiation at 430 nm by frequency doubling light from a current-modulated 860-nm diode laser, using noncritical type I phase matching in a KNbO3 crystal. The optical spectrum of the doubled light was found to be in keeping with our expectations based on the measured frequency- and amplitude-modulation indices of the fundamental radiation. The experimentally measured diode laser and crystal parameters were used to simulate the in-phase and quadrature signals that would be observed in a single-tone frequency-modulation spectroscopy experiment.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
    [CrossRef]
  2. P. Werle, Spectrochim. Acta A 54, 197 (1998).
    [CrossRef]
  3. G. Hall and S. W. North, Annu. Rev. Phys. Chem. 51, 243 (2000).
    [CrossRef]
  4. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
    [CrossRef]
  5. J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
    [CrossRef]
  6. L. Goldberg and D. A. V. Kliner, Opt. Lett. 20, 1640 (1995).
    [CrossRef] [PubMed]
  7. D. B. Oh, Opt. Lett. 20, 100 (1995).
    [CrossRef] [PubMed]
  8. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, and B. Zysset, J. Opt. Soc. Am. B 9, 507 (1992).
    [CrossRef]
  9. J.-C. Baumert, P. Günter, and H. Melchior, Opt. Commun. 48, 215 (1983).
    [CrossRef]
  10. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
    [CrossRef]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
    [CrossRef]

2000

G. Hall and S. W. North, Annu. Rev. Phys. Chem. 51, 243 (2000).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

1998

J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
[CrossRef]

P. Werle, Spectrochim. Acta A 54, 197 (1998).
[CrossRef]

1996

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

1995

1992

1983

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

J.-C. Baumert, P. Günter, and H. Melchior, Opt. Commun. 48, 215 (1983).
[CrossRef]

1980

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, P. Günter, and H. Melchior, Opt. Commun. 48, 215 (1983).
[CrossRef]

Biaggio, I.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
[CrossRef]

Fei, R.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

Fox, R. W.

J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
[CrossRef]

Franzke, J.

J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
[CrossRef]

Goldberg, L.

Günter, P.

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

Hall, G.

G. Hall and S. W. North, Annu. Rev. Phys. Chem. 51, 243 (2000).
[CrossRef]

Hall, G. E.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

Hollberg, L.

J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
[CrossRef]

Kerkoc, P.

Kliner, D. A. V.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Melchior, H.

J.-C. Baumert, P. Günter, and H. Melchior, Opt. Commun. 48, 215 (1983).
[CrossRef]

North, S. W.

G. Hall and S. W. North, Annu. Rev. Phys. Chem. 51, 243 (2000).
[CrossRef]

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

Oh, D. B.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

Werle, P.

P. Werle, Spectrochim. Acta A 54, 197 (1998).
[CrossRef]

Wu, L.-S.

Zheng, X. S.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

Zysset, B.

Annu. Rev. Phys. Chem.

G. Hall and S. W. North, Annu. Rev. Phys. Chem. 51, 243 (2000).
[CrossRef]

Appl. Phys. B

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Appl. Phys. Lett.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000).
[CrossRef]

J. Chem. Phys.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, J. Chem. Phys. 104, 2129 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J.-C. Baumert, P. Günter, and H. Melchior, Opt. Commun. 48, 215 (1983).
[CrossRef]

Opt. Lett.

Spectrochim. Acta B

J. Franzke, R. W. Fox, and L. Hollberg, Spectrochim. Acta B 53, 1951 (1998).
[CrossRef]

Spectrochim. Acta A

P. Werle, Spectrochim. Acta A 54, 197 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical spectra of frequency-modulated fundamental radiation (trace 1) and second-harmonic radiation (trace 2 shows the experimental data, and trace 3 is a simulation). The modulation frequency is 400 MHz, and the fundamental wavelength is 859.842 nm. The asymmetry in trace 2 is a consequence of rapid sweeping of the laser frequency.

Fig. 2
Fig. 2

A, in-phase and D, quadrature signal amplitudes of the frequency-doubled frequency-modulated light at several values of R=νm/w versus the fundamental FM index β.

Fig. 3
Fig. 3

A, in-phase and D, quadrature signal amplitudes versus frequency detuning at modulation frequency 400 MHz, δ0=0.01, w=2.4 GHz, β=0.55, M=0.076, Ψ=3.59.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Et=E01+M sin2πνmt+Ψ×expi2πν0t+β sin2πνmt,
Et=E0 expi2πν0t×l=-l=rlβ,M,Ψexpi2πlνmt,
rlβ,M,Ψ=Jlβ+M2iJl-1βexpiΨ-Jl+1βexp-iΨ
Pt,2ν0=0dν0Et,ν02,
P=0dν0E021+2M sin2πνmt+Ψ+M sin2πνmt+Ψ2×expi2π2ν0t+2β sin2πνmt.
P=0 expi4πν0tl=-l=rlEldl1/2×expi2πlνmtk=-k=rkEkdk1/2 expi2πkνmt,
Pt=0 expi2π2ν0tk=-k=+sk expi2πkνmt,
itn,j=-n,j=+snsj¯ expin-j2πνmt-δn-δj-iϕn-ϕj,
itAνcos2πνmt+Dνsin2πνmt,

Metrics