Abstract

The mechanical interaction between an electromagnetic field and a nanoscopic thin film near electronic resonance is theoretically studied by calculation of Maxwell’s stress tensor. As a result of numerical demonstrations for both propagating and evanescent incident waves, the following effects that are specific to this condition have been clarified: (1) The force exerted on a nanoscopic thin film is greatly enhanced near the resonance frequency to the same order of magnitude as for a film with macroscopic thickness. (2) The peak position of the gradient force in its spectrum is highly sensitive to the change in nanoscopic thickness that is due to the polaritonic effect. (3) In a total-reflection region a large enhancement of the repulsive force between the two thin films occurs when the films act as an optical cavity.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. See H.-J. Guntherodt, D. Anselmetti, and E. Meyer, eds., Forces in Scanning Probe Method, Vol. 286 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1995), p. 235.
  3. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
    [CrossRef]
  4. K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
    [CrossRef]
  5. S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
    [CrossRef]
  6. C. Cohen-Tanoudji, in Fundamental Systems in Quantum Optics, J. Dalibard, J. Raimond, and J. Zinn-Justion, eds., Les Houches 1990 Sessions LIII (North-Holland, Amsterdam, 1992), p. 7.
  7. The force exerted on micrometer-order thin film by the evanescent wave was analyzed for the nonresonant case by T. Sugiura and S. Kawata, Bioimaging 1, 1 (1993).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 258.

2001 (1)

S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
[CrossRef]

1999 (1)

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

1998 (1)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
[CrossRef]

1993 (1)

The force exerted on micrometer-order thin film by the evanescent wave was analyzed for the nonresonant case by T. Sugiura and S. Kawata, Bioimaging 1, 1 (1993).
[CrossRef]

1986 (1)

Ashkin, A.

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
[CrossRef]

Bjorkholm, J. E.

Chu, S.

Cohen-Tanoudji, C.

C. Cohen-Tanoudji, in Fundamental Systems in Quantum Optics, J. Dalibard, J. Raimond, and J. Zinn-Justion, eds., Les Houches 1990 Sessions LIII (North-Holland, Amsterdam, 1992), p. 7.

Dziedzic, J. M.

Ito, S.

S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 258.

Kawata, S.

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

The force exerted on micrometer-order thin film by the evanescent wave was analyzed for the nonresonant case by T. Sugiura and S. Kawata, Bioimaging 1, 1 (1993).
[CrossRef]

Masuhara, H.

S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

Sugiura, T.

The force exerted on micrometer-order thin film by the evanescent wave was analyzed for the nonresonant case by T. Sugiura and S. Kawata, Bioimaging 1, 1 (1993).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
[CrossRef]

Yoshikawa, H.

S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

S. Ito, H. Yoshikawa, and H. Masuhara, Appl. Phys. Lett. 78, 2566 (2001).
[CrossRef]

Bioimaging (1)

The force exerted on micrometer-order thin film by the evanescent wave was analyzed for the nonresonant case by T. Sugiura and S. Kawata, Bioimaging 1, 1 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1998).
[CrossRef]

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

Other (3)

See H.-J. Guntherodt, D. Anselmetti, and E. Meyer, eds., Forces in Scanning Probe Method, Vol. 286 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1995), p. 235.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 258.

C. Cohen-Tanoudji, in Fundamental Systems in Quantum Optics, J. Dalibard, J. Raimond, and J. Zinn-Justion, eds., Les Houches 1990 Sessions LIII (North-Holland, Amsterdam, 1992), p. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Frequency dependence of the radiation force. (a), (b) Film thickness, 100 nm. The total force (solid curves) and the part proportional to R in Eq. (3) (dashed curves) are shown. (a) γd=0.02 meV, (b) γd=1.0 meV. (c) The film thickness, 10 nm; γd=0.02 meV. φ=0°, s polarization φ=30°, and p polarization φ=30 from Eq. (3). (b), (c) Insets, forces in the absence of the resonance term in Eq. (1).

Fig. 2
Fig. 2

Frequency dependence of the force in the evanescent field. It is assumed that there is a semi-infinite glass substrate (refractive index, 1.51) in z<0 and that the incident angle of the light is 50° (over a critical angle of the evanescent wave in the present condition). Distance between the film and the substrate, 200 nm. (a) Without the resonance term, (b) with the resonance term in Eq. (1)γd=0.02 meV.

Fig. 3
Fig. 3

Spatial distribution of electric field intensity normalized by incident intensity. It is assumed that the thickness of the metallic film is 25 nm and the distance between the two films is 169.4 nm (λex/2; λex is the wavelength of the resonant light), and normal incidence is assumed. (b) Frequency dependence of the cavity-induced radiation force γd=0.02 meV. F2z, force on the dielectric thin film with a resonance level; F1z, force on the metallic thin film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω=b+4πβωex2ωex2-ω2-iγdω.
Fz=S2c2ω2κ12Ei2 exp-2κ2d1+Er2×exp2κ2d1-Et2 exp-2κ2d2-κ22EiEr*×exp2iκ1d1+Ei*Er exp-2iκ1d1.
Fz=S212R+AEi2 cos2 φ,

Metrics