Abstract

Developing a complete vectorial description of optical nonparaxial propagation of highly focused beams in Kerr media, we disclose a family of new phenomena. These phenomena appear to emerge as a consequence of the mutual coupling of all three components of the optical field. This circumstance, which is intrinsic to the very nature of Kerr propagation, was previously discarded on the basis of the conjecture that a reduced system is possible in which only one transverse field component interacts with the longitudinal component.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Fleit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
    [CrossRef]
  2. J. T. Manassah and B. Gross, Opt. Lett. 17, 976 (1992).
    [CrossRef] [PubMed]
  3. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Opt. Lett. 18, 411 (1993).
    [CrossRef] [PubMed]
  4. G. Fibich and G. C. Papanicolaou, Opt. Lett. 22, 1379 (1997).
    [CrossRef]
  5. A. P. Sheppard and M. Haelterman, Opt. Lett. 23, 1820 (1998).
    [CrossRef]
  6. S. Chi and Q. Cuo, Opt. Lett. 20, 1598 (1995).
    [CrossRef] [PubMed]
  7. B. Crosignani, P. Di Porto, and A. Yariv, Opt. Lett. 22, 778 (1997).
    [CrossRef] [PubMed]
  8. E. Granot, S. Sternklar, Y. Isbi, B. Malomed, and A. Lewis, Opt. Lett. 22, 1290 (1997).
    [CrossRef]
  9. S. Blair and K. Wagner, Opt. Quantum Electron. 30, 697 (1998).
    [CrossRef]
  10. R. De la Fuente, O. Varela, and H. Michinel, Opt. Commun. 173, 403 (2000).
    [CrossRef]
  11. S. Blair, Chaos 10, 570 (2000).
    [CrossRef]
  12. G. Fibich and B. Ilan, Opt. Lett. 26, 840 (2001).
    [CrossRef]
  13. A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, J. Opt. Soc. Am. B 17, 809 (2000).
    [CrossRef]
  14. B. Crosignani, A. Cutolo, and P. Di Porto, J. Opt. Soc. Am. 72, 1136 (1982).
    [CrossRef]

2001 (1)

2000 (3)

R. De la Fuente, O. Varela, and H. Michinel, Opt. Commun. 173, 403 (2000).
[CrossRef]

S. Blair, Chaos 10, 570 (2000).
[CrossRef]

A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, J. Opt. Soc. Am. B 17, 809 (2000).
[CrossRef]

1998 (2)

S. Blair and K. Wagner, Opt. Quantum Electron. 30, 697 (1998).
[CrossRef]

A. P. Sheppard and M. Haelterman, Opt. Lett. 23, 1820 (1998).
[CrossRef]

1997 (3)

1995 (1)

1993 (1)

1992 (1)

1988 (1)

1982 (1)

Akhmediev, N.

Ankiewicz, A.

Blair, S.

S. Blair, Chaos 10, 570 (2000).
[CrossRef]

S. Blair and K. Wagner, Opt. Quantum Electron. 30, 697 (1998).
[CrossRef]

Chi, S.

Ciattoni, A.

Crosignani, B.

Cuo, Q.

Cutolo, A.

De la Fuente, R.

R. De la Fuente, O. Varela, and H. Michinel, Opt. Commun. 173, 403 (2000).
[CrossRef]

Di Porto, P.

Fibich, G.

Fleck, J. A.

Fleit, M. D.

Granot, E.

Gross, B.

Haelterman, M.

Ilan, B.

Isbi, Y.

Lewis, A.

Malomed, B.

Manassah, J. T.

Michinel, H.

R. De la Fuente, O. Varela, and H. Michinel, Opt. Commun. 173, 403 (2000).
[CrossRef]

Papanicolaou, G. C.

Sheppard, A. P.

Soto-Crespo, J. M.

Sternklar, S.

Varela, O.

R. De la Fuente, O. Varela, and H. Michinel, Opt. Commun. 173, 403 (2000).
[CrossRef]

Wagner, K.

S. Blair and K. Wagner, Opt. Quantum Electron. 30, 697 (1998).
[CrossRef]

Yariv, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Transverse Poynting vector S distribution during collapse according to Eq. (1). (a) Self-focusing up to z=4Zd. (b) Anisotropic structures at z=4.18Zd. (c) Onset of ultradiffraction at z=4.24Zd.

Fig. 2
Fig. 2

Spatial spectra (a), (c) Ax and (b), (d) Ay, according to Eq. (1) for (a), (b) z=4.04Zd and (c), (d) z=4.20Zd. Note the remarkable parametriclike excitation of strongly tilted modes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

iz+12k2-18k322A=-kn0δnA-in0δn·A-in0δn*·A+12n0k2δnA+1n0δnzz·A-1n0k·δnA,
Az=ik̇A.
δn=23n2A2+12Ax212AyAx*12AxAy*A2+12Ay2,
δn=13n2AzA*,
δnzz=23n2A2+n2Az2,
iz+12k2-18k322A=-2k3n2n0A2A-k3n2n0A·AA*-23kn2n0·A2A-13kn2n0A·A·A*+13kn2n0·A2A*+13kn2n02A2A+16kn2n02A·AA*+23kn2n0·AA2-23kn2n0·A2A-13kn2n0·A·AA*,
iz+12k2-18k322Ax=-kn2n0Ax2Ax+12kn2n02y2Ax2Ax-13kn2n0Ax2Ax2x2-12kn2n0Ax22Ax*x2-2kn2n0AxAxx2,

Metrics