Abstract

We demonstrate the use of a novel technique for the detection of heterodyne laser-induced thermal acoustic signals that allows the construction of a highly stable seedless laser velocimeter. A common-path configuration is combined with quadrature detection to provide flow direction, to greatly improve robustness to misalignment and vibration, and to give reliable velocity measurement at low-flow velocities. Comparison with Pitot tube measurements in the free stream of a wind tunnel shows root-mean-square errors of 0.67 m/s over the 0–55-m/s velocity range.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durrani and C. Greated, Laser Systems in Flow Measurements (Plenum, New York, 1977).
    [CrossRef]
  2. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer-Verlag, New York, 1998).
    [CrossRef]
  3. D. J. W. Walker, R. B. Williams, and P. Ewart, Opt. Lett. 23, 1316 (1998).
    [CrossRef]
  4. S. Schlamp, E. B. Cummings, and T. H. Sobota, Opt. Lett. 25, 224 (2000).
    [CrossRef]
  5. B. Hemmerling, D. N. Kozlov, and A. Stampanoni-Panariello, Opt. Lett. 25, 1340 (2000).
    [CrossRef]
  6. R. Hart, R. Balla, and G. Herring, Appl. Opt. 40, 965 (2001).
    [CrossRef]
  7. L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).
  8. R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

2001 (1)

2000 (2)

1998 (1)

Balla, R.

R. Hart, R. Balla, and G. Herring, Appl. Opt. 40, 965 (2001).
[CrossRef]

R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

Coppens, A.

L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).

Cummings, E. B.

Durrani, T.

T. Durrani and C. Greated, Laser Systems in Flow Measurements (Plenum, New York, 1977).
[CrossRef]

Ewart, P.

Frey, A.

L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).

Greated, C.

T. Durrani and C. Greated, Laser Systems in Flow Measurements (Plenum, New York, 1977).
[CrossRef]

Hart, R.

Hart, R. C.

R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

Hemmerling, B.

Herring, G.

Herring, G. C.

R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

Jenkins, L.

R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

Kinsler, L.

L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).

Kompenhans, J.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer-Verlag, New York, 1998).
[CrossRef]

Kozlov, D. N.

Raffel, M.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer-Verlag, New York, 1998).
[CrossRef]

Sanders, J.

L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).

Schlamp, S.

Sobota, T. H.

Stampanoni-Panariello, A.

Walker, D. J. W.

Willert, C. E.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer-Verlag, New York, 1998).
[CrossRef]

Williams, R. B.

Appl. Opt. (1)

Opt. Lett. (3)

Other (4)

T. Durrani and C. Greated, Laser Systems in Flow Measurements (Plenum, New York, 1977).
[CrossRef]

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer-Verlag, New York, 1998).
[CrossRef]

L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).

R. C. Hart, R. Balla, G. C. Herring, and L. Jenkins, “Seedless laser velocimetry using heterodyne laser induced thermal acoustics,” available as at www.icase.edu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Beam-crossing geometry and schematic of detection scheme: A, attenuator; B, beam stop; C, focal/detector plane.

Fig. 2
Fig. 2

Plane C in Fig. 1 showing Ronchi ruling (thick lines) and one traveling fringe pattern.

Fig. 3
Fig. 3

Experimental power spectral density (PSD) of a single-shot LITA waveform taken by use of grating demodulation and quadrature detection. Flow velocity νF=45 m/s and fB=7.8 MHz.

Fig. 4
Fig. 4

Error VPitot-VLITA for measurements in a wind tunnel free stream. Data shown are from four runs taken on separate days. Error bars show one standard deviation of the mean. The average single-shot precision for the data is 1.2 m/s; for more details see Ref. 8.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

At=ALO expiωt+AS exp-βt×expiω+Δω-t+expiω+Δω+t+c.c.,
Pt=ALO2+2ALOAS exp-βtcosΔω-t+cosΔω+t,
P˜Rω˜=2ALOASββ2+ω˜±Δω-2+ββ2+ω˜±Δω+2,
At=ALO expikLO·r-ωt+AS exp-βt×expikS·r-ω+Δω-t+AS exp-βt×expikS·r-ω+Δω+t+c.c.,
Ix,t=ALO2+2ALOAS exp-βt×cosqx+Δω-t+cosqx+Δω+t,
Pt=Faa+DIx,tdx,
Pt=bALO2-2cALOAS exp-βt×sinφcosΔω-t+cosφsinΔω-t-2cALOAS exp-βtsinφcosΔω+t+cosφsinΔω+t,
P0t=bALO2+2cALOAS exp-βtcosΔω-t+cosΔω+t,P90t=bALO2+2cALOAS exp-βtsinΔω-t+sinΔω+t.
Z˜Rω˜=2cALOASββ2+ω˜-Δω-2+ββ2+ω˜-Δω+2,

Metrics