Abstract

Control of the group-velocity differences between two distinct modes in a few-mode fiber can be used to define the spectral characteristics of long-period gratings written in them. Using this effect, we report the demonstration of strong mode conversion >99% with long-period fiber gratings over what is believed to be a record bandwidth of 63 nm. These novel spectra are obtained from gratings written in specially designed few-mode fibers in which the grating phase-matching condition is satisfied over a large spectral range. We show that the bandwidths of such mode converters can be tailored by suitably altering the design of the few-mode fibers. The polarization-dependent coupling for the mode converters varies by less than 0.004% over the entire spectrum.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
    [CrossRef]
  2. C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
    [CrossRef]
  3. V. Grubsky and J. Feinberg, Opt. Lett. 25, 203 (2000).
    [CrossRef]
  4. C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
    [CrossRef]

2001 (1)

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

2000 (1)

1994 (2)

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Boivin, L.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Brownlow, D.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Cowsar, L. C.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

DiGiovanni, D. J.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Feinberg, J.

Fishteyn, M.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Grubsky, V.

Gruner-Nielsen, L.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Huff, R. G.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Meetser, J. M.

C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Mikkelsen, B.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Poole, C. D.

C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
[CrossRef]

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Presby, H. M.

C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Ramachandran, S.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Raybon, G.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Reed, W. A.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Vengsarkar, A. M.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Weisenfeld, J. M.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Wisk, P.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Yan, M. F.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

Electron. Lett. (1)

C. D. Poole, H. M. Presby, and J. M. Meetser, Electron. Lett. 30, 1437 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, IEEE Photon. Technol. Lett. 13, 632 (2001).
[CrossRef]

J. Lightwave Technol. (1)

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Simulation: Grating phase-matching curve in dispersion-tailored fibers. Large bandwidths are obtained at the TAP. (b) Experiment: Resultant TAP LPG spectrum. The peak coupling is >30 dB more than the 20-dB (99%) coupling over 63 nm. Grating period Λ=120.2 µm, Δn5×10-4. The dashed lines indicate the grating period and show the correspondence between the phase-matching relationship and the grating spectrum obtained.

Fig. 2
Fig. 2

Control of the LPG spectra by fiber design. (a) Experimental spectra show that the bandwidth increases as ΔD of the fiber decreases. (b) Grating bandwidth versus ΔDLg, where Lg is the grating length. The experimental data show an excellent match with the theoretical predictions of Eq. (5).

Fig. 3
Fig. 3

Polarization dependence of TAP LPG. (a) Spectrum for a strong mode converter; the inset shows the polarization-dependent response of the residual fundamental mode. (b) Polarization response of the LP02 mode, deduced from the data in (a). The spectra are barely distinguishable. The peak coupling changes by 0.0002 dB; the 20-dB bandwidth, by 0.2 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δλ=122πΛ-Δβλ,
λres=ΔnΛ,
dΛdλres=ΔngΔn2,
Δλ=0.0955 λres2LΔng.
Δλ=0.63λresLΔDc1/2,

Metrics