Abstract

We demonstrate, for the first time to our knowledge, the generation of squeezed light by means of soliton self-phase modulation in microstructure fiber. We observe and characterize the formation of solitons in the microstructure fiber at 1550 nm. A maximum squeezing of 2.7 dB is observed, corresponding to 4.0 dB after correcting for detection losses. The dependence of this quantum-noise reduction on various system parameters is studied in detail. Features of the microstructure fiber can be exploited for generation of low-energy continuous-variable entangled pulses for use in all-fiber teleportation experiments.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  3. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggelton, S. G. Kosinsky, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
    [CrossRef]
  4. J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 1048 (2001).
    [CrossRef]
  5. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 26, 1158 (2001).
    [CrossRef]
  6. Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
    [CrossRef] [PubMed]
  7. T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).
    [CrossRef]
  8. M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, Phys. Rev. A 64, 031801 (2001).
    [CrossRef]
  9. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
    [CrossRef]
  10. D. Krylov and K. Bergman, Opt. Lett. 23, 1390 (1998).
    [CrossRef]
  11. M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, Opt. Express 10, 128 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2002 (1)

2001 (5)

2000 (1)

1998 (3)

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

D. Krylov and K. Bergman, Opt. Lett. 23, 1390 (1998).
[CrossRef]

T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).
[CrossRef]

1996 (1)

Arriaga, J.

Atkin, D. M.

Bergman, K.

Birks, T. A.

Chandalia, J. K.

Eggelton, B. J.

Ficker, J.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Fiorentino, M.

Knight, J. C.

Knox, W. H.

König, F.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Korolkova, N.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

Kosinsky, S. G.

Krylov, D.

Kumar, P.

Lam, P. K.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).
[CrossRef]

Leuchs, G.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Levandovsky, D.

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, Phys. Rev. A 64, 031801 (2001).
[CrossRef]

Liu, X.

Moores, M. D.

Omenetto, F. G.

Porzio, A.

Ralph, T. C.

T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Schmitt, S.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Sharping, J. E.

Silberhorn, Ch.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

Sizmann, A.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Stentz, A. J.

Taylor, A. J.

Vasilyev, M.

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, Phys. Rev. A 64, 031801 (2001).
[CrossRef]

Wadsworth, W. J.

Weiss, O.

Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

Windeler, R. S.

Wolff, M.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

Xu, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of our experimental setup. OPO, optical parametric oscillator; HWP1–HWP4, half-wave plates; QWP1–QWP3, quarter-wave plates; PBS1–PBS5, polarizing beam splitters; M1, M2, mirrors. Top inset, schematic of the equivalent Mach–Zehnder interferometer and graphic illustration of the mechanism leading to amplitude squeezing. (a) Amplitude-dependent phase shift deforms the solitons’ symmetrical quantum-noise distribution. (b) A properly phased auxiliary pulse can be used to align the squeezed quadrature with the mean field. Bottom inset, photocurrent-noise spectral density at 20.5 MHz normalized to the shot-noise level (0 dB). The pulse energy in the strong arm was 1.3 times the soliton energy, and 0.35 m of MF B was used; TI=0.09 and TO=0.065. All traces were averaged five times.

Fig. 2
Fig. 2

Plots of experimental quantum-noise reduction in 0.7 m of MF A as a function of the energy of the strong pulse expressed in terms of squared soliton number N2.

Fig. 3
Fig. 3

Plots of the experimental QNR in MF B as a function of the energy of the strong pulse (expressed in N2) for different fiber lengths L. The inset in (b) shows the normalized spectra for the N21.4 pulse (dark trace) and the weak pulse (light trace) at the output of the MF, showing the self-frequency shift that is due to the Raman effect.

Metrics