Abstract

A new sensor based on optical surface waves in truncated one-dimensional photonic crystals is proposed for use in determining the optical properties of metallic or dielectric thin films and bulk media. Specifically, the method of optical characterization takes into account the changes that the surface waves of a layered structure undergo when either a thin film of arbitrary material is added at the surface or the optical properties of transmission medium change. For the surface-wave excitation the Kretschmann configuration used in attenuated total reflectance is employed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ramos-Mendieta and P. Halevi, J. Opt. Soc. Am. B 14, 370 (1997).
    [CrossRef]
  2. P. Yeh, A. Yariv, and Ch.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [CrossRef]
  3. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  4. N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
    [CrossRef]
  5. C. G. Ribbing and O. Staaf, Proc. SPIE 4103, 116 (2000).
    [CrossRef]
  6. E. Fontana, R. H. Pantell, and S. Strober, Appl. Opt. 29, 4694 (1990).
    [CrossRef] [PubMed]
  7. T. Okamoto, T. Kamiyama, and I. Yamaguchi, Opt. Lett. 18, 1570 (1993).
    [CrossRef]
  8. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and V. Gaponenko, J. Lightwave Technol. 17, 2018 (1999).
    [CrossRef]
  9. W. M. Robertson, J. Lightwave Technol. 17, 2013 (1999).
    [CrossRef]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1986).
  11. N. Kaiser, in Optical Inteference Coatings, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1-1.
  12. Z. M. Meiksin, Phys. Thin Films 8, 99 (1975).
  13. D. E. Aspnes, Thin Solid Films 89, 249 (1982).
    [CrossRef]
  14. T. Okamoto, M. Yamamotot, and I. Yamaguchi, J. Opt. Soc. Am. A 17, 1880 (2000).
    [CrossRef]

2000 (2)

1999 (3)

1997 (1)

1993 (1)

1990 (1)

1982 (1)

D. E. Aspnes, Thin Solid Films 89, 249 (1982).
[CrossRef]

1977 (1)

1975 (1)

Z. M. Meiksin, Phys. Thin Films 8, 99 (1975).

Arechabaleta, R. A.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, Thin Solid Films 89, 249 (1982).
[CrossRef]

Boussaad, S.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Chigrin, D. N.

D’Agnese, J.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Fontana, E.

Gaponenko, V.

Halevi, P.

Hong, Ch.-S.

Huang, W. L.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Kaiser, N.

N. Kaiser, in Optical Inteference Coatings, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1-1.

Kamiyama, T.

Lavrinenko, A. V.

Meiksin, Z. M.

Z. M. Meiksin, Phys. Thin Films 8, 99 (1975).

Okamoto, T.

Pantell, R. H.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1986).

Ramos-Mendieta, F.

Ribbing, C. G.

C. G. Ribbing and O. Staaf, Proc. SPIE 4103, 116 (2000).
[CrossRef]

Robertson, W. M.

Staaf, O.

C. G. Ribbing and O. Staaf, Proc. SPIE 4103, 116 (2000).
[CrossRef]

Strober, S.

Tao, N. J.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Yamaguchi, I.

Yamamotot, M.

Yariv, A.

Yarotsky, D. A.

Yeh, P.

P. Yeh, A. Yariv, and Ch.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Appl. Opt. (1)

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Thin Films (1)

Z. M. Meiksin, Phys. Thin Films 8, 99 (1975).

Proc. SPIE (1)

C. G. Ribbing and O. Staaf, Proc. SPIE 4103, 116 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, Rev. Sci. Instrum. 70, 4656 (1999).
[CrossRef]

Thin Solid Films (1)

D. E. Aspnes, Thin Solid Films 89, 249 (1982).
[CrossRef]

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1986).

N. Kaiser, in Optical Inteference Coatings, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA1-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Band structure of the TE polarization of an infinite periodic system. In this case, ω¯ and β¯ are given in reduced units, ωd/2πc and βd/2π, respectively. The light lines for vacuum (the transmission medium) and for BK7 glass (the incident medium) at an angle of incidence of 85° are given by the upper and lower dashed–dotted lines, respectively. The area limited by these lines represents the region where it is possible to excite SWs by total internal reflection with a BK7 prism. The surface modes are indicated by dashed lines. The squared electric field amplitude is shown in the inset for the SW in the first gap ω¯=0.358, β¯=0.511, indicated by a diamond.

Fig. 2
Fig. 2

Kretschmann configuration and multilayer system for three periods for measuring SWs. Reflectance can be measured by variation of wavelength while either the angle of incidence or Rθ,λ is kept constant. E2 is the squared electric field amplitude.

Fig. 3
Fig. 3

Surface mode of the first bandgap observed at the fixed angle of θ=70° for different thicknesses τ (in millimeters) of the truncated layer, τA.

Fig. 4
Fig. 4

Surface mode of the first bandgap observed at the fixed angles of θ=70° with the truncated crystal g-AB30.4A-T-a, considering as a test overlayer T and ultrathin discontinuous film of gold with different thicknesses T and filling fractions f. For T=1 nm, f=0.0092 (curve with spheres), the complex refractive index is λ=632.8 nm and NT=1.025-i0.002538. For T=3 nm, f=0.045 (triangles), NT=1.122-i0.013. For T=10 nm, f=0.138 (solid curve), NT=1.402-i0.047. For T=20 nm, f=0.295 (dashed curve), NT=2.055-i0.17.

Fig. 5
Fig. 5

Surface mode of the first bandgap observed at an angle of incidence θ=70° with the system g-AB30.4A-a. The natural mode with air as a transmission medium is shown by the solid curve. If a saline water solution is substituted for air, the peak is displaced close to λ=690 nm. Curve with spheres, refractive index of a saline solution, ns-iks=1.332-i2×10-4; curve with diamonds, ks=2×10-3; dashed curve, ks=10-1.

Metrics