Abstract

A new optical parametric oscillator (OPO) for the mid-infrared wavelength region of 33.8 µm with an idler output power of up to 1.5 W has been developed. The singly resonant OPO is pumped by a single-mode, 10-W, continuous-wave Nd:YAG laser and consists of a bow-tie ring cavity with a fan-out periodically poled lithium niobate crystal and a low-finesse intracavity air-spaced etalon. The single-frequency idler output can be continuously tuned over 24 GHz with 700-mW power by tuning of the pump laser. The tuning was demonstrated by recording of an absorption line of ethane with photoacoustic spectroscopy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, and J. I. Alexander, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  2. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
    [CrossRef]
  3. G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 293 (2000).
    [CrossRef]
  4. K. Nauta and R. E. Miller, J. Chem. Phys. 113, 10158 (2000).
    [CrossRef]
  5. S. T. Persijn, R. H. Veltman, J. Oomens, F. J. M. Harren, and D. H. Parker, Appl. Spectrosc. 54, 62 (2000).
    [CrossRef]
  6. F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.
  7. A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, Opt. Lett. 25, 1264 (2000).
    [CrossRef]
  8. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, Opt. Lett. 24, 1142 (1999).
    [CrossRef]
  9. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 490 (2000).
    [CrossRef]
  10. J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
    [CrossRef]
  11. C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
    [CrossRef]

2000 (6)

1999 (1)

1998 (1)

1996 (1)

1994 (1)

C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
[CrossRef]

Alexander, J. I.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 293 (2000).
[CrossRef]

Bisson, S.

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

Bisson, S. E.

Boller, K.-J.

Borschowa, L. A.

Bosenberg, W. R.

Cotti, G.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.

Drobshoff, A.

Harren, F. J. M.

S. T. Persijn, R. H. Veltman, J. Oomens, F. J. M. Harren, and D. H. Parker, Appl. Spectrosc. 54, 62 (2000).
[CrossRef]

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.

Harting, M.

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

Henderson, A. J.

Klein, M. E.

Kneepkens, C. M. F.

C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
[CrossRef]

Kulp, T.

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

Kulp, T. J.

Laue, C. K.

Lee, D.-H.

Lepage, G.

C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
[CrossRef]

Mead, R. D.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 293 (2000).
[CrossRef]

Meyn, J.-P.

Miller, R. E.

K. Nauta and R. E. Miller, J. Chem. Phys. 113, 10158 (2000).
[CrossRef]

Nauta, K.

K. Nauta and R. E. Miller, J. Chem. Phys. 113, 10158 (2000).
[CrossRef]

Oomens, J.

S. T. Persijn, R. H. Veltman, J. Oomens, F. J. M. Harren, and D. H. Parker, Appl. Spectrosc. 54, 62 (2000).
[CrossRef]

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.

Parker, D. H.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 293 (2000).
[CrossRef]

Persijn, S. T.

Powers, P. E.

Roper, P. M.

Roy, C. C.

C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
[CrossRef]

te Lintel Hekkert, S.

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.

Veltman, R. H.

Wallenstein, R.

Appl. Spectrosc. (1)

Free Radical Biol. Med. (1)

C. M. F. Kneepkens, G. Lepage, and C. C. Roy, Free Radical Biol. Med. 17, 127 (1994).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 293 (2000).
[CrossRef]

J. Chem. Phys. (1)

K. Nauta and R. E. Miller, J. Chem. Phys. 113, 10158 (2000).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

J. Oomens, S. Bisson, M. Harting, T. Kulp, and F. J. M. Harren, Proc. SPIE 3916, 295 (2000).
[CrossRef]

Other (1)

F. J. M. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2203–2226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the cw SRO. The pump beam is focused into the 50-mm-long fan-out PPLN with a 10-cm lens. A combination of a half-wave plate and a polarizing beam splitter is used to change the pump power. The cavity is resonant for the signal beam at 1.51.7 µm and consists of two flat mirrors and two curved mirrors with 10-cm radii of curvature. The idler wavelength at 3.03.8 µm is sent to a photoacoustic cell and a wavemeter. An intracavity air-spaced etalon is used to enhance frequency.

Fig. 2
Fig. 2

Idler output and pump depletion versus pump input power for the SRO operating at an idler wavelength of 3.3 µm. The oscillation threshold is 3.0 W, and a maximum idler power of 1.5 W is observed with a pump power of 9 W.

Fig. 3
Fig. 3

Single-frequency tuning of the pressure-broadened (0.75-atm) ν7, v=10,K=43, Q-branch transition J=439 of ethane is demonstrated by use of photoacoustic (PA) spectroscopy. The experimental results are shown by the scatter graph, and the spectrum of ethane from the Hitran database is shown by the solid curve.

Fig. 4
Fig. 4

While the idler wavelength was monitored with a wavemeter, the pump source of the OPO was tuned by a change in its driving voltage. The whole range of the pump laser was scanned, and after 60 s it was scanned back. The mode hops in the idler wavelength (dashed lines) are caused by mode hops in the pump source. A total tuning range of 24 GHz is found. The resolution of the picture was limited by the resolution of the wavemeter and the data acquisition card of the computer.

Metrics