Abstract

Accuracy in measuring displacement in optical interferometers is limited by cyclic errors introduced by various leakage paths within the system. Existing techniques to reduce this nonlinearity do not work when there is large optical loss in the target path, such as for long-range measurements. We describe a new approach to reducing nonlinearity that overcomes these limitations. Based on phase modulation of the laser light, and requiring minimal additional components, experiments have demonstrated rejection of the effects of leakage in the presence of large optical loss.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. De Freitas and M. A. Player, J. Mod. Opt. 42, 1875 (1995).
    [CrossRef]
  2. N. Bobroff, Appl. Opt. 26, 2676 (1987).
    [CrossRef] [PubMed]
  3. W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
    [CrossRef]
  4. B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).
  5. O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

1995 (1)

J. M. De Freitas and M. A. Player, J. Mod. Opt. 42, 1875 (1995).
[CrossRef]

1992 (1)

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

1987 (1)

Blackwood, G. H.

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Bobroff, N.

Colavita, M.

B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).

De Freitas, J. M.

J. M. De Freitas and M. A. Player, J. Mod. Opt. 42, 1875 (1995).
[CrossRef]

Dubovitsky, S.

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Gorham, P. W.

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Hines, B.

B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).

Hou, W.

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

Lay, O. P.

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Linfield, R. P.

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Player, M. A.

J. M. De Freitas and M. A. Player, J. Mod. Opt. 42, 1875 (1995).
[CrossRef]

Poulsen, A.

B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).

Wallace, K.

B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).

Wilkening, G.

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (1)

J. M. De Freitas and M. A. Player, J. Mod. Opt. 42, 1875 (1995).
[CrossRef]

Precis. Eng. (1)

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

Other (2)

B. Hines, M. Colavita, K. Wallace, and A. Poulsen, in Proceedings of the ESO Conference on Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed., ESO Conference and Workshop Proceedings 42 (European Southern Observatory, Garching, Germany, 1992).

O. P. Lay, G. H. Blackwood, S. Dubovitsky, P. W. Gorham, and R. P. Linfield, in Optical IR Interferometry from Ground and Space, S. Unwin and R. Stachnik, eds., Vol. 194 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, Dana Point, Calif., 1999), pp. 366–372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Heterodyne interferometer with carrier phase modulation (CPM). (a) Implementation: shaded components are additions to the regular heterodyne interferometer needed to implement the CPM technique; (b) electronic spectra. Other abbreviations defined in text. Experimental implementation parameters: laser wavelength, 1.32 µm; L=10 m; Ω=7.5 MHz; f=100 kHz; phase-modulation depth, Δϕ=1.84.

Fig. 2
Fig. 2

Filter function produced by the CPM technique. The phase-modulation frequency is set to Ω=7.5 MHz; the modulation depth is 1.84, and the rf phase is adjusted to be φRF=0.

Fig. 3
Fig. 3

Measured position versus target displacement for a regular heterodyne interferometer and for a heterodyne interferometer with the CPM technique. The self-interference beat is 16 dB above the desired signal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Vs=kHLk,Ω,φRFsin2πft+ν0+f1Lkc,
HLk,Ω,φRF=sinφRF+2πΩLkc×J12Δϕ sin2πΩLkc
X=HLT,Ω,φRFHLSI,Ω,φRFLTLSI2.

Metrics