Abstract

It is shown that an array of microcavities, or defects, in a photonic band-gap lattice can dramatically increase nonlinear sensitivity compared with that of bulk material. These defects open transmission resonances within the bandgap. Nonlinear induced detuning of these resonances can result in a greater than tenfold increase in the nonlinear phase shift relative to that of a bulk material of the same thickness and give a better figure of merit than operating at the band edge of a photonic lattice without defects.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Smith, Appl. Opt. 25, 1550 (1986).
    [Crossref]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
    [Crossref]
  3. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
    [Crossref]
  4. S. Radic, N. George, and G. P. Agrawal, J. Opt. Soc. Am. B 12, 671 (1995).
    [Crossref]
  5. D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
    [Crossref]
  6. S. Blair, J. Opt. Soc. Am. B 18, 1943 (2001).
    [Crossref]
  7. S. Blair, J. Heebner, and R. W. Boyd, Opt. Lett. 27, 357 (2002).
    [Crossref]

2002 (1)

2001 (1)

2000 (1)

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

1999 (1)

1995 (1)

1986 (1)

Agrawal, G. P.

Blair, S.

Boyd, R. W.

Fan, S.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[Crossref]

George, N.

Haus, H. A.

Heebner, J.

Ippen, E. P.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Joannopoulos, J. D.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[Crossref]

Johnson, S. G.

Kolodziejski, L. A.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Lim, K.-Y.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[Crossref]

Manolatou, C.

Petrich, G. S.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Radic, S.

Ripin, D. J.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Smith, S. D.

Thoen, E. R.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

Villeneuve, P. R.

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[Crossref]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, J. Appl. Phys. 87, 1578 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Other (1)

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top, multilayer thin-film geometry of the photonic microcavity array. The structure consists of alternating low- (SiO2, index 1.46, shaded) and high- (SiN, index 2.1, dark) index layers, which are quarter-wave at 800 nm. The high-index cavities consist of eight quarter-wave SiN layers. Bottom, intensity transmission (solid curves) and phase (dashed curves) of the transmission resonances of the 1-D photonic bandgap lattice with a periodic array of three (thinner curves) and seven (thicker curves) microcavities. The bandgap extends from 710 nm to 910 nm.

Fig. 2
Fig. 2

Nonlinear phase change at 800 nm for a photonic microcavity array with the structure LH3H7LH6N-1H7LH2L for N=31 (solid thicker curve), N=15 (dashed thicker curve), N=7 (dotted–dashed thicker curve), and N=3 (dotted thicker curve, which partially overlaps the solid curve for the bulk phase shift). Phase shifts for bulk materials of the same thicknesses as the corresponding microcavity arrays are shown by the corresponding thinner curves.

Fig. 3
Fig. 3

Top, nonlinear phase change and (bottom) FOM at 800 nm for a photonic microcavity array with the structure LH4H15LH8N-1H15LH3L for N=15 (solid thicker curve), N=11 (dashed thicker curve), N=7 (dotted–dashed thicker curve), and N=3 (dotted thicker curve). Phase shifts for the corresponding bulk materials are shown by thinner curves. Smaller values of N are used, as the ringdown time of this structure is much longer than in previous structures of equal N.

Fig. 4
Fig. 4

Top, nonlinear phase change and, bottom, FOM at 936 nm for a photonic bandgap array with the structure LHM for M=44 (dashed thinner curve) and M=72 (solid thinner curve). Phase shifts and FOM for a photonic microcavity array with the LH4H15LH8N-1H15LH3L of the same thicknesses (N=3 and N=5) as the corresponding photonic bandgaps are shown by thicker curves.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LH3H7LH6N-1H7LH2L,
LH4H15LH8N-1H15LH3L.
FOM=ΔϕtπeEt2Ei2,

Metrics