Abstract

The effect of wall tilt on the performance of directional couplers has been studied. There is a significant reduction in the coupling length as the tilt decreases when nonvertical walls, which are inherent in nearly all clean-room waveguide fabrication processes, are considered. Comparison of 90° and 45° coupling lengths reveals a difference of nearly a factor of 2 between them. Experimental data obtained with antiresonant reflecting optical waveguide directional couplers confirm that tilt effects should be considered in any device with large core thickness.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Asakawa and A. R. Mickelson, Opt. Lett. 18, 417 (1993).
    [CrossRef]
  2. H. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
    [CrossRef]
  3. T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
    [CrossRef]
  4. I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
    [CrossRef]
  5. T. Baba and Y. Kokubun, Photon. Technol. Lett. 1, 232 (1989).
    [CrossRef]
  6. W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
    [CrossRef]
  7. T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
    [CrossRef]
  8. C. Kim and R. Ramaswamy, J. Lightwave Technol. 7, 1581 (1989).
    [CrossRef]
  9. Y. Chung and N. Dagli, J. Quantum Electron. 27, 2296 (1991).
    [CrossRef]
  10. R. Knox and P. Toulios, in Proceedings of the Symposium on Submillimeter Waves (Polytechnic, Brooklyn, N.Y., 1970), pp. 497–516.
  11. C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
    [CrossRef]

1999

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

1996

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

1993

1992

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

1991

H. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Y. Chung and N. Dagli, J. Quantum Electron. 27, 2296 (1991).
[CrossRef]

1989

T. Baba and Y. Kokubun, Photon. Technol. Lett. 1, 232 (1989).
[CrossRef]

C. Kim and R. Ramaswamy, J. Lightwave Technol. 7, 1581 (1989).
[CrossRef]

Asakawa, S.

Baba, T.

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

T. Baba and Y. Kokubun, Photon. Technol. Lett. 1, 232 (1989).
[CrossRef]

Chow, Y. L.

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

Chung, Y.

Y. Chung and N. Dagli, J. Quantum Electron. 27, 2296 (1991).
[CrossRef]

Dagli, N.

Y. Chung and N. Dagli, J. Quantum Electron. 27, 2296 (1991).
[CrossRef]

Domínguez, C.

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

Garcés, I.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

Haus, H.

H. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Huang, W.

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

H. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Kim, C.

C. Kim and R. Ramaswamy, J. Lightwave Technol. 7, 1581 (1989).
[CrossRef]

Knox, R.

R. Knox and P. Toulios, in Proceedings of the Symposium on Submillimeter Waves (Polytechnic, Brooklyn, N.Y., 1970), pp. 497–516.

Kokubun, Y.

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

T. Baba and Y. Kokubun, Photon. Technol. Lett. 1, 232 (1989).
[CrossRef]

Mickelson, A. R.

Moreno, M.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

Muñoz, F.

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

Nathan, A.

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

Ramaswamy, R.

C. Kim and R. Ramaswamy, J. Lightwave Technol. 7, 1581 (1989).
[CrossRef]

Rodríguez, J. A.

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

Shubair, R.

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

Toulios, P.

R. Knox and P. Toulios, in Proceedings of the Symposium on Submillimeter Waves (Polytechnic, Brooklyn, N.Y., 1970), pp. 497–516.

Vallés, J. A.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

Villuendas, F.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

Zine, N.

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

J. Lightwave Technol.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, J. Lightwave Technol. 14, 798 (1996).
[CrossRef]

C. Kim and R. Ramaswamy, J. Lightwave Technol. 7, 1581 (1989).
[CrossRef]

J. Lightwave Technol.

W. Huang, R. Shubair, A. Nathan, and Y. L. Chow, J. Lightwave Technol. 10, 1015 (1992).
[CrossRef]

J. Quantum Electron.

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

Y. Chung and N. Dagli, J. Quantum Electron. 27, 2296 (1991).
[CrossRef]

T. Baba and Y. Kokubun, J. Quantum Electron. 28, 1689 (1992).
[CrossRef]

Opt. Lett.

Photon. Technol. Lett.

T. Baba and Y. Kokubun, Photon. Technol. Lett. 1, 232 (1989).
[CrossRef]

Proc. IEEE

H. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).
[CrossRef]

Vacuum

C. Domínguez, J. A. Rodríguez, F. Muñoz, and N. Zine, Vacuum 52, 395 (1999).
[CrossRef]

Other

R. Knox and P. Toulios, in Proceedings of the Symposium on Submillimeter Waves (Polytechnic, Brooklyn, N.Y., 1970), pp. 497–516.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning-electron microphotograph of the core of a 2µm-wide, 3.5µm-rib waveguide. Wall tilt caused by reactive ion etching can be observed.

Fig. 2
Fig. 2

Fundamental structure and refractive-index profile of ARROW-B directional couplers.

Fig. 3
Fig. 3

Electric field profiles of the symmetric and antisymmetric modes in an ARROW-B directional coupler for three amounts of wall tilt.

Fig. 4
Fig. 4

AA cut of the symmetric and antisymmetric modes of Fig. 3. The increasing evanescent field overlap of the symmetric mode can be observed, together with the lobe separation of the anitsymmetric mode.

Fig. 5
Fig. 5

Coupling length and effective index difference as functions of tilt angle.

Fig. 6
Fig. 6

Power interchange between ARROW-B waveguides of the directional coupler as a function of the distance: experimental and simulations with 80° and 90° tilted walls.

Metrics