Abstract

We report the complete spatiotemporal characterization of ultrashort light pulses by use of a self-referencing device based on shearing interferometry in the space and frequency domains. The apparatus combines a spatially resolved spectral shearing interferometer with a spectrally resolved spatial shearing interferometer. The electric field as a function of one transverse spatial coordinate and time is obtained from a single experimental trace by means of a direct and fast algebraic phase reconstruction algorithm. The method has been tested in several common laboratory situations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  2. Z. Bor, J. Mod. Opt. 35, 1907 (1988).
    [CrossRef]
  3. M. M. Wefers and K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
    [CrossRef]
  4. M. M. Wefers, K. A. Nelson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
    [CrossRef] [PubMed]
  5. J. C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, J. Opt. Soc. Am. B 17, 151 (2000).
    [CrossRef]
  6. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, Appl. Opt. 38, 3316 (1999).
    [CrossRef]
  7. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.
  8. L. Gallmann, G. Steinmeyer, D. H. Sutter, T. Rupp, C. Iaconis, I. A. Walmsley, and U. Keller, Opt. Lett. 26, 96 (2001).
    [CrossRef]
  9. Z. Bor, Z. Gogolak, and G. Szabo, Opt. Lett. 14, 862 (1989).
    [CrossRef] [PubMed]
  10. R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
    [CrossRef]
  11. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]

2001 (1)

2000 (2)

1999 (1)

1998 (1)

1996 (3)

1989 (1)

1988 (1)

Z. Bor, J. Mod. Opt. 35, 1907 (1988).
[CrossRef]

Bisson, S. E.

Bor, Z.

Carillon, A.

Chanteloup, J. C.

Clement, T. S.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.

Diddams, S. A.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.

Eaton, H. K.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.

Feurer, T.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
[CrossRef]

Gallmann, L.

Gogolak, Z.

Hubert, S.

Iaconis, C.

Jacobson, A.

Kalachnikov, M.

Keller, U.

Klisnick, A.

Migus, A.

Nelson, K. A.

M. M. Wefers and K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

M. M. Wefers, K. A. Nelson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
[CrossRef] [PubMed]

Netz, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
[CrossRef]

Nickles, P.

Richman, B. A.

Ros, D.

Rupp, T.

Salmon, E.

Sauerbrey, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
[CrossRef]

Sauteret, C.

Sidick, E.

Steinmeyer, G.

Sutter, D. H.

Szabo, G.

Trebino, R.

Walmsley, I.

Walmsley, I. A.

Wefers, M. M.

M. M. Wefers and K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

M. M. Wefers, K. A. Nelson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
[CrossRef] [PubMed]

Weiner, A. M.

Wolleschensky, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
[CrossRef]

Wong, V.

Zeitoun, P.

Zozulya, A. A.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.

Appl. Opt. (1)

Appl. Phys. B (1)

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, Appl. Phys. B 70, 833 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Wefers and K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

J. Mod. Opt. (1)

Z. Bor, J. Mod. Opt. 35, 1907 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Other (1)

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CFF3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for the generation of a spectral shear in the x,ω domain. Two fields, E˜x,ω-ω0 and E˜x,ω-ω0-Ω, are generated, where ω is near the upconverted frequency.

Fig. 2
Fig. 2

Setup for the generation of a spatial shear in the x,ω domain. Two fields, E˜x+X,ω and E˜x,ω, are generated, where ω is near the fundamental frequency.

Fig. 3
Fig. 3

Spatiospectral phase of a negatively chirped focusing electric field.

Fig. 4
Fig. 4

Contour plot of the intensity of the field after a LaK21 prism. The energy of the pulse lies along a straight line, t=γx, in the x,t space.

Fig. 5
Fig. 5

(a) Spatiospectral phase of the electric field after nonlinear propagation in a 1.25-cm-thick block of SF59 glass and (b) spatial phases at t=0 for a low-energy (solid curve) and a high-energy (dotted curve) pulse.

Metrics