Abstract

A novel integrated optical sensor based on a cylindrical microcavity (MC) is proposed. A MC sustains so-called whispering-gallery modes (WGMs), in which the energy of the optical field can be efficiently stored. By monitoring the scattering intensity from the MC, one can detect minute changes in the refractive index of the WGM, for instance, as a result of analyte adsorption. Measurement of a change in refractive index of as little as 10-4 is demonstrated experimentally. The MC-based integrated optical sensor may have a size of approximately 8 µm, and it is rugged and inexpensive.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Clerc and W. Lukosz, Sensors Actuators B 19, 581 (1994).
    [CrossRef]
  2. W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
    [CrossRef]
  3. R. G. Heideman and P. V. Lambeck, Sensors Actuators B 61, 100 (1999).
    [CrossRef]
  4. A. Brandenburg, Sensors Actuators B 38–39, 266 (1997).
    [CrossRef]
  5. R. K. Chang and A. J. Campillo, eds., Optical Process in Microcavities (World Scientific, Singapore, 1996).
  6. D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
    [CrossRef]
  7. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
    [CrossRef]
  8. L. M. Lechuga, Quim. Anal. 19, Suppl. 1, 61 (2000).
  9. M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
    [CrossRef]

2001

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

2000

L. M. Lechuga, Quim. Anal. 19, Suppl. 1, 61 (2000).

1999

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

R. G. Heideman and P. V. Lambeck, Sensors Actuators B 61, 100 (1999).
[CrossRef]

1997

A. Brandenburg, Sensors Actuators B 38–39, 266 (1997).
[CrossRef]

1996

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

1994

D. Clerc and W. Lukosz, Sensors Actuators B 19, 581 (1994).
[CrossRef]

M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Brandenburg, A.

A. Brandenburg, Sensors Actuators B 38–39, 266 (1997).
[CrossRef]

Bultuis, H. F.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Chin, M. K.

M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Clerc, D.

D. Clerc and W. Lukosz, Sensors Actuators B 19, 581 (1994).
[CrossRef]

Driessen, A.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Dübendorfer, J.

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, Sensors Actuators B 61, 100 (1999).
[CrossRef]

Hilderink, L. T. H.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Ho, S.-T.

M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Hoekstra, H. J. W. M.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Klunder, D. J. W.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Krioukov, E.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Lambeck, P. V.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

R. G. Heideman and P. V. Lambeck, Sensors Actuators B 61, 100 (1999).
[CrossRef]

Lechuga, L. M.

L. M. Lechuga, Quim. Anal. 19, Suppl. 1, 61 (2000).

Linders, P. W. C.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Lukosz, W.

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

D. Clerc and W. Lukosz, Sensors Actuators B 19, 581 (1994).
[CrossRef]

Moser, H. R.

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

Otto, C.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Popma, Th. J. A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Ryf, R.

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

Sengo, G.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Stamm, Ch.

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

Tan, F. S.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

van der Veen, T.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Wörhoff, K.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Appl. Phys. B

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bultuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

J. Appl. Phys.

M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Quim. Anal.

L. M. Lechuga, Quim. Anal. 19, Suppl. 1, 61 (2000).

Sensors Actuators A

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Sensors Actuators B

D. Clerc and W. Lukosz, Sensors Actuators B 19, 581 (1994).
[CrossRef]

W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Dübendorfer, Sensors Actuators B 31, 203 (1996).
[CrossRef]

R. G. Heideman and P. V. Lambeck, Sensors Actuators B 61, 100 (1999).
[CrossRef]

A. Brandenburg, Sensors Actuators B 38–39, 266 (1997).
[CrossRef]

Other

R. K. Chang and A. J. Campillo, eds., Optical Process in Microcavities (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section and view of an integrated optical MC sensor. Light from a tunable laser is coupled into the excitation waveguide, and the scattering is measured from the top of the MC as a function of the wavelength with various solutions in the sensing area. Dotted line, localization of a high-Q whispering-gallery mode; its propagation direction is shown by an arrow around the circumference. Device parameters: R=15 µm, hc=255 nm, he=150 mm.

Fig. 2
Fig. 2

Scattering spectrum from the MC measured with water cladding n=1.33. The modes of the MC, denoted A, B, and C, can be identified. Pin=1 mW.

Fig. 3
Fig. 3

Detail of the scattering spectrum near mode B. Comparison of the scattering spectra (a) from neat water and (b) from ethanol n=1.45 on top of the MC.

Fig. 4
Fig. 4

Scattering spectra from the MC recorded by fine laser tuning (<0.001nm accuracy) near mode B λ=782.6 nm with (a) water, (b) 0.5% glucose, and (c) 1% glucose in the cladding.

Fig. 5
Fig. 5

Measured shifts in resonance wavelengths for three claddings: (a) 0.5% glucose, (b) 1% glucose, and (c) EtOH. Solid curve, calculated dependence of the resonance wavelength shift on the cladding index based on the equation ΔλL=λL/NeffNeff/ncΔnc. The values of Neff=1.7277 and Neff/nc=0.048 were calculated from the device parameters given in Fig. 1 and the theory described in Ref. 9.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PscatPin=S1+4F/π2 sin20.52π/λNeffL,
PscatΔNeff=SPin1+4Q2ΔNeff/Neff2+BPin,

Metrics