Abstract

A novel technique for programming broadband true-time delays that uses two frequency-offset temporally overlapped linear frequency-chirped pulses to produce periodic spectral gratings in an inhomogeneously broadened absorber is presented. Advantages of this technique include its ability to use chirped pulses that are longer than the coherence time of the crystal, less stringent laser frequency-stability requirements for grating accumulation, lower power requirements, a simplified system design, and the ability to tune broadband (multigigahertz) delays over a wide dynamic range (picoseconds to microseconds).

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  2. X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, and S. Kroll, Opt. Lett. 25, 945 (2000).
    [CrossRef]
  3. Y. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [CrossRef]
  4. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
    [CrossRef] [PubMed]
  5. K. D. Merkel, R. Peters, P. Sellin, K. Repasky, and W. R. Babbitt, Opt. Lett. 25, 1627 (2000).
    [CrossRef]
  6. K. D. Merkel and W. R. Babbitt, Opt. Lett. 23, 528 (1998).
    [CrossRef]
  7. M. Tian, J. Zhao, Z. Cole, R. Reibel, and W. R. Babbitt, J. Opt. Soc. Am. B 18, 673 (2001).
    [CrossRef]
  8. L. Ménager, L. Cabaret, I. Lorgeré, and J. Le L. Gouët, Opt. Lett. 25, 1246 (2000).
    [CrossRef]

2001 (1)

2000 (3)

1998 (1)

1996 (1)

1984 (1)

Y. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

1982 (1)

Afzelius, M.

Babbitt, W. R.

Bai, Y.

Y. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Cabaret, L.

Carlson, N. W.

Y. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Cole, Z.

Gouët, J. Le L.

Gustafsson, U.

Kroll, S.

Lorgeré, I.

Ménager, L.

Merkel, K. D.

Mossberg, T. W.

Y. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[CrossRef] [PubMed]

Ohlsson, N.

Peters, R.

Reibel, R.

Repasky, K.

Sellin, P.

Tian, M.

Wang, X.

Zhao, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Input sequences and expected echo as a function of the frequency offset between (a) two LFC pulses separated by a delay τ21 and (b) two temporally overlapped LFC pulses. Solid lines, amplitude; dashed lines, frequency.

Fig. 2
Fig. 2

Measured echo delays versus frequency offset for several values of τC; solid lines are calculated from Eq. (1). The lines for τC=30 and 100 µs demonstrate LFC pulse durations well in excess of T2.

Fig. 3
Fig. 3

Example of a TTD data sequence (right, ×30). Here τc=100 µs, with a programmed time delay of 625 ns. The data sequence (left) is 1 0 1 0 1 1 0 0 1 at a data rate of 20 Mbits/s.

Fig. 4
Fig. 4

Echo powers versus programming number (lower axis) and time (upper axis) for a frequency-stabilized Ti:sapphire laser system. Various programming strengths (Rabi frequency, Ω) are plotted, as shown in the legend. Here τc=1 µs, τD=250 ns, and τr=31 µs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τD=τ21+δ/γ.
V=Acos2πfm-δ/2t+cos2πfm+δ/2t,

Metrics