Abstract

We propose the use of nonlinear four-wave mixing as a means of trapping light in a defect state in a nonuniform fiber grating. The amount of energy deposited is estimated by use of an approach similar to Fermi’s “golden rule” and is approximately 30 fJ for realistic grating parameters and a pulsed pump of 100-ps width.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).
  2. C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
    [Crossref]
  3. A. B. Aceves, Chaos 10, 584 (2000).
    [Crossref]
  4. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
    [Crossref] [PubMed]
  5. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
    [Crossref]
  6. N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
    [Crossref]
  7. C. M. de Sterke, Phys. Rev. E 57, 3502 (1998).
    [Crossref]
  8. B. J. Eggleton, Bell Laboratories, Lucent Technologies, egg@lucent.com (personal communication).
  9. H. G. Winful and V. Perlin, Phys. Rev. Lett. 84, 3586 (2000).
    [Crossref] [PubMed]
  10. See, e.g., R. Loudon, The Quantum Theory of Light (Oxford U. Press, Oxford, 1994), Chap. 2.

2000 (2)

A. B. Aceves, Chaos 10, 584 (2000).
[Crossref]

H. G. Winful and V. Perlin, Phys. Rev. Lett. 84, 3586 (2000).
[Crossref] [PubMed]

1998 (1)

C. M. de Sterke, Phys. Rev. E 57, 3502 (1998).
[Crossref]

1997 (1)

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[Crossref]

1996 (2)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Aceves, A. B.

A. B. Aceves, Chaos 10, 584 (2000).
[Crossref]

Broderick, N. G. R.

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[Crossref]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

de Sterke, C. M.

C. M. de Sterke, Phys. Rev. E 57, 3502 (1998).
[Crossref]

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
[Crossref]

Eggleton, B. J.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

B. J. Eggleton, Bell Laboratories, Lucent Technologies, egg@lucent.com (personal communication).

Ibsen, M.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Laming, R. I.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Loudon, R.

See, e.g., R. Loudon, The Quantum Theory of Light (Oxford U. Press, Oxford, 1994), Chap. 2.

Perlin, V.

H. G. Winful and V. Perlin, Phys. Rev. Lett. 84, 3586 (2000).
[Crossref] [PubMed]

Richardson, D. J.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
[Crossref]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Taverner, D.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Winful, H. G.

H. G. Winful and V. Perlin, Phys. Rev. Lett. 84, 3586 (2000).
[Crossref] [PubMed]

Chaos (1)

A. B. Aceves, Chaos 10, 584 (2000).
[Crossref]

Phys. Rev. E (2)

N. G. R. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[Crossref]

C. M. de Sterke, Phys. Rev. E 57, 3502 (1998).
[Crossref]

Phys. Rev. Lett. (3)

H. G. Winful and V. Perlin, Phys. Rev. Lett. 84, 3586 (2000).
[Crossref] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566 (1996).
[Crossref]

Other (4)

R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
[Crossref]

See, e.g., R. Loudon, The Quantum Theory of Light (Oxford U. Press, Oxford, 1994), Chap. 2.

B. J. Eggleton, Bell Laboratories, Lucent Technologies, egg@lucent.com (personal communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Refractive index n versus position z in the grating considered. Dashed curve, the eigenstate’s intensity. (b) Schematic of the relevant frequencies versus position. Bound states have frequencies ω1,2 close to the Bragg frequency ωB.

Fig. 2
Fig. 2

Ratio ρ of the peak intensity in the well to that of the pump pulse. A numerical simulation of FWM (filled circles) is compared with the analytical result (solid curve) and the direct approach (stars).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ez,t=Epzexpikpz-ωpt+Eizexpikiz-ωit+E+z,texpikBz+E-z,texp-ikBz×exp-iωBt,
iVE+t+iE+z+κzE-=-2ΓEp2E+-ΓEp2Ei expiΔkz-Ωtg+, iVE-t-iE-z+κzE+=-2ΓEp2E-g-,
dbldt=iΓVEp02Ei0* exp-iζtFΔk,
FΔkP-1dzψl+* expiΔkz.
2ωp-ωi-ωB-Ωl+2ΓVEp02=0,
bl2=2πVn2τλBAeff2Sp2SiFΔk2,
FΔk2FΩlV2=P-1α2α+κ2w22κ4αw+1,
U=2Vπn2τλBAeff2Sp2Siα2α+κ2w2κ4αw+1,

Metrics