Abstract

We study theoretically and experimentally the so-called self-induced modulational instability laser and show that the passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process that leads to generation of a dark-pulse train in the normal-dispersion regime.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, Opt. Lett. 20, 2009 (1995).
    [CrossRef] [PubMed]
  2. E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997).
    [CrossRef]
  3. P. Honzatko, P. Peterka, and J. Kanka, Opt. Lett. 26, 810 (2001).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 3rd ed. (Academic, San Diego, Calif., 2001).
  5. M. Quiroga-Teixeiro, C. Balslev Clausen, M. P. Sørensen, P. L. Christiansen, and P. A. Andrekson, J. Opt. Soc. Am. B 15, 1315 (1998).
    [CrossRef]
  6. E. V. Vanin and S. Helmfrid, in Nonlinear Guided Waves and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 262–264.
  7. J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
    [CrossRef] [PubMed]
  8. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
    [CrossRef]
  9. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
    [CrossRef]
  10. M. Romagnoli, M. Midrio, P. Franco, and F. Fontana, J. Opt. Soc. Am. B 12, 1732 (1995).
    [CrossRef]

2001

1998

1997

1995

1994

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

1991

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 3rd ed. (Academic, San Diego, Calif., 2001).

Andrekson, P. A.

Balslev Clausen, C.

Chamberlin, R. P.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Chernikov, S. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Christiansen, P. L.

Cristiani, I.

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Dong, L.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Fontana, F.

Franco, P.

Helmfrid, S.

E. V. Vanin and S. Helmfrid, in Nonlinear Guided Waves and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 262–264.

Honzatko, P.

Kanka, J.

Mamyshev, P. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Midrio, M.

Nakazawa, M.

Payne, D. N.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Peterka, P.

Quiroga-Teixeiro, M.

Richardson, D. J.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Romagnoli, M.

Roy, R.

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

Sørensen, M. P.

Thompson, J. R.

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

Vanin, E. V.

E. V. Vanin and S. Helmfrid, in Nonlinear Guided Waves and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 262–264.

Yoshida, E.

Electron. Lett.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

IEEE J. Quantum Electron.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

Other

E. V. Vanin and S. Helmfrid, in Nonlinear Guided Waves and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 262–264.

G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 3rd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Theoretical temporal intensity and phase profiles and (b) corresponding spectrum of the stationary pulse train circulating in the laser with anomalous dispersion (η=-1, α0=20, ΔνFP=0.3, g0=200, Is=160, and b=0.0772). (c) Pulse train generation in the phase plane (η1 cos ϕ1, η1 sin ϕ1).

Fig. 2
Fig. 2

Same as Fig. 1 but with normal dispersion, η=+1, and with g0=360, Is=200, and b=0.0434. These parameters have been particularly chosen to produce the same peak power as in Fig. 1.

Fig. 3
Fig. 3

Experimental setup: WDM, wavelength-division multiplexer; DSF (DCF), dispersion-shifted (-compensating) fiber.

Fig. 4
Fig. 4

(a) Experimental intensity autocorrelation trace and (b) optical spectrum (resolution, 0.1 nm; central wavelength, 1547 nm) at the laser output for an intracavity power of 43 mW. (c), (d) Comparison with numerical simulations (inset, the corresponding dark-pulse train).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Uz+iη2-b2Ut2=g01+I/Is-α0U+iU2U,

Metrics